精英家教网 > 高中数学 > 题目详情
正三棱柱ABC-A1B1C1的底面边长为2,侧棱长为
3
,则直线BC1与平面AA1B1B所成角的正切值为(  )
A、
2
2
B、
2
4
C、
3
2
D、
3
4
考点:直线与平面所成的角
专题:空间角
分析:取A1B1的中点D,连接C1D,BD,BC1,则可得∠C1BD即为直线BC1与平面AA1BB1所成角,解三角形可得答案.
解答: 解:取A1B1的中点D,连接C1D,BD,BC1

∵正三棱柱ABC-A1B1C1的底面为等边三角形,
故C1D⊥取A1B1
又∵平面AA1BB1∩平面A1B1C1=A1B1,平面AA1BB1⊥平面A1B1C1,C1D?平面A1B1C1
∴C1D⊥平面AA1BB1
故∠C1BD即为直线BC1与平面AA1BB1所成角,
∵棱柱底面边长为2,侧棱长为
3

故BD=2,CD=
3

故tan∠C1BD=
CD
BD
=
3
2

故选:C.
点评:本题考查的知识点是直线与平面所成的角,其中得到∠C1BD即为直线BC1与平面AA1BB1所成角,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
x+1
x
的定义域为(  )
A、[-1,0)
B、(0,+∞)
C、[-1,0)∪(0,+∞)
D、(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面斜坐标系中∠xOy=60°,平面上任意一点P的斜坐标是这样定义的:若
OP
=x
e1
+y
e2
e1
e2
)分别是与x,y轴同方向的单位向量),则P点的斜坐标为(x,y).在斜坐标系中以O为圆心,2为半径的圆的方程为(  )
A、x2+y2=2
B、x2+y2=4
C、x2+y2+xy=2
D、x2+y2+xy=4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+ax2(a∈R)
(1)求f(x)的单调区间;
(2)若xf′(x)-f(x)>0在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A={x|x2-3(a+1)x+2(3a+1)<0},B={x|
x-2a
x-(a2+1)
<0},若A⊆B,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线4x2-y2+64=0的一个焦点F到它的一条渐近线距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

点M与点F(3,0)的距离比它到直线x+5=0的距离小2,则点M的轨迹方程为(  )
A、y2=-12x
B、y2=6x
C、y2=12x
D、y2=-6x

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:|2x+1|-|x-4|>3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P1(6,-3),P2(-3,8),且|
P1P
|=2|
PP2
|
,点P在线段P1P2的延长线上,则P点的坐标为
 

查看答案和解析>>

同步练习册答案