精英家教网 > 高中数学 > 题目详情

设随机变量X的分布列为P(X=i)=,(i=1,2,3,4).
(1)求P(X<3);
(2)求P
(3)求函数F(x)=P(X<x).

(1)   (2)    (3)

解析解:(1)P(X<3)=P(X=1)+P(X=2)=.
(2)P=P(X=1)+P(X=2)+P(X=3)=
(3)F(x)=P(X<x)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.
(1)求出甲、乙所付租车费用相同的概率;
(2)求甲、乙两人所付的租车费用之和为随机变量X,求X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某种零件的尺寸X(单位:mm)服从正态分布,其正态曲线在(0,80)上是增函数,在(80,+∞)上是减函数,且f(80)=.
(1)求正态分布密度函数的解析式;
(2)估计尺寸在72mm~88mm之间的零件大约占总数的百分之几.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对一批共50件的某电器进行分类检测,其重量(克)统计如下:

重量段
[80,85)
[85,90)
[90,95)
[95,100]
件数
5
a
15
b
规定重量在82克及以下的为“A”型,重量在85克及以上的为“B”型,已知该批电器有“A”型2件
(1)从该批电器中任选1件,求其为“B”型的概率;
(2)从重量在[80,85)的5件电器中,任选2件,求其中恰有1件为“A”型的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,由M到N的电路中有4个元件,分别标为T1,T2,T3,T4,电流能通过T1,T2,T3的概率都是p,电流能通过T4的概率是0.9.电流能否通过各元件相互独立.已知T1,T2,T3中至少有一个能通过电流的概率为0.999.

(1)求p;
(2)求电流能在M与N之间通过的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A“取出的2件产品都是二等品”的概率P(A)=0.04
(1)求从该批产品中任取1件是二等品的概率;
(2)若该批产品共10件,从中任意抽取2件;X表示取出的2件产品中二等品的件数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

江西某品牌豆腐食品是经过三道工序加工而成的,工序的产品合格率分别为.已知每道工序的加工都相互独立,三道工序加工的产品都为合格时产品为一等品;恰有两次合格为二等品;其它的为废品,不进入市场.
(1)生产一袋豆腐食品,求产品为废品的概率;
(2)生产一袋豆腐食品,设为三道加工工序中产品合格的工序数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某市准备从5名报名者(其中男3人,女2人)中选2人参加两个副局长职务竞选.
(1)求所选2人均为女副局长的概率;
(2)若选派两个副局长依次到A、B两个局上任,求A局是男副局长的情况下,B局是女副局长的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x2+bx+c,其中b、c是某范围内的随机数,分别在下列条件下,求事件A“f(1)≤5且f(0)≤3”发生的概率.
(1)若随机数b,c∈{1,2,3,4};
(2)已知随机函数Rand()产生的随机数的范围为{x|0≤x≤1},b,c是算法语句b=4*Rand()和c=4*Rand()的执行结果.(注:符号“*”表示“乘号”)

查看答案和解析>>

同步练习册答案