精英家教网 > 高中数学 > 题目详情

【题目】函数的定义域为,且对任意,有,且当时,

(Ⅰ)证明是奇函数;

(Ⅱ)证明上是减函数;

(III)若,,求的取值范围.

【答案】(Ⅰ)见解析(Ⅱ)见解析(III)

【解析】

(Ⅰ)令y=-x,代入已知等式通过f(0)=0可判断奇偶性;(Ⅱ)利用函数的单调性定义作差即可得到证明;(III)利用函数的单调性列不等式求解即可.

(Ⅰ)证明:由

y=-x,f[x+(x)]=f(x)+f(x)

f(x)+f(x)=f(0).

f(0+0)=f(0)+f(0),∴f(0)=0.

从而有f(x)+f(x)=0.f(x)=f(x).

f(x)是奇函数.

(Ⅱ)任取,且

,∴<0.

>0,即

从而f(x)R上是减函数.

(III)若,函数为奇函数得f(-3)=1,

又5=5f(-3)=f(-15),

所以=f(-15),

f(4x-13)<f(-15),

由函数单调递减得4x-13>-15,解得x>-,

的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,分别是椭圆的左、右焦点.

(1)若点是第一象限内椭圆上的一点, ,求点的坐标;

(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[﹣3,﹣2]上是减函数,若α,β是锐角三角形的两个内角,则(
A.f(sinα)>f(sinβ)
B.f(sinα)<f(cosβ)
C.f(cosα)<f(cosβ)
D.f(sinα)>f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{bn}的前n项和
(1)求数列{bn}的通项公式;
(2)设数列{an}的通项 ,求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)

(1)应收集多少位女生样本数据?

(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.

(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为该校学生的每周平均体育运动时间与性别有关.

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数与函数为“同族函数”.下面函数解析式中能够被用来构造“同族函数”的是(

A.B.C.

D.E.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象,如图所示.

(1)求函数的解析式;

(2)若方程上有两个不同的实根,试求的取值范围;

(3)若,求出函数上的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)的表达式为f(x)= (c≠0),则函数f(x)的图象的对称中心为(﹣ ),现已知函数f(x)= ,数列{an}的通项公式为an=f( )(n∈N),则此数列前2017项的和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数,且

1)求a的值;

2)求证:在定义域上是减函数.

3)解关于实数的不等式

查看答案和解析>>

同步练习册答案