精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,,四边形BDEF是矩形,平面平面ABCDHCF的中点.

1)求证:平面BDEF

2)求直线DH与平面CEF所成角的正弦值;

【答案】1)证明见解析(2

【解析】

1)由面面垂直的性质可证平面BDEF

2)以ACBD的交点为坐标原点,DB方向为x轴,AC方向为y轴,建立空间直角坐标系,求出面CEF的法向量,即可求直线DH与平面CEF所成角的正弦值.

1)证明:四边形ABCD是菱形,.

平面平面ABCD,平面平面

平面ABCD

平面BDEF

2)以ACBD的交点为坐标原点,DB方向为x轴,AC方向为y轴,建立空间直角坐标系,

,

.

设面CEF的法向量为

,不妨令

得到面CEF的法向量为

因此:

与面CEF所成的角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数).

(1)若函数在点处的切线方程为,试确定函数的单调区间;

(2)①当时,若对于任意,都有恒成立,求实数的最小值;②当时,设函数,是否存在实数,使得?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,直线与抛物线交于两点,是坐标原点.

(1)若直线过点,求直线的方程;

(2)已知点,若直线不与坐标轴垂直,且,证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知F是抛物线C:的焦点,过E(﹣l,0)的直线与抛物线分別交于A,B两点(点A,B在x轴的上方).

(1)设直线AF,BF的斜率分別为,证明:

(2)若ABF的面积为4,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省确定从2021年开始,高考采用“”的模式,取消文理分科,即“3”包括语文、数学、英语,为必考科目:“1”表示从物理、历史中任选一门;“2”则是从生物、化学、地理、政治中选择两门,共计六门考试科目.某高中从高一年级2000名学生(其中女生900人)中,采用分层抽样的方法抽取名学生进行调查.

(1)已知抽取的名学生中含男生110人,求的值及抽取到的女生人数;

(2)学校计划在高二上学期开设选修中的“物理”和“历史”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的名学生讲行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目).下表是根据调查结果得到的列联表,请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;

性别

选择物理

选择历史

总计

男生

50

女生

30

总计

(3)在(2)的条件下,从抽取的选择“物理”的学生中按分层抽样抽取6人,再从这6名学生中抽取2人,对“物理”的选课意向作深入了解,求2人中至少有1名女生的概率.

参考公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是双曲线上的动点,是双曲线的焦点,M的平分线上一点,且,某同学用以下方法研究:延长于点N,可知为等腰三角形,且M的中点,得,类似地:点是椭圆上的动点,椭圆的焦点,M的平分线上一点,且的取值范围是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某隧道的剖面图是由半圆及矩形组成,交通部门拟在隧道顶部安装通风设备(视作点),为了固定该设备,计划除从隧道最高点处使用钢管垂直向下吊装以外,再在两侧自两点分别使用钢管支撑.已知道路宽,设备要求安装在半圆内部,所使用的钢管总长度为.

(1)①设,将表示为关于的函数;

②设,将表示为关于的函数;

(2)请选用(1)中的一个函数关系式,说明如何设计,所用的钢管材料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5)[0.5,1)[4,4.5]分成9组,制成了如图所示的频率分布直方图.

)求直方图中a的值;

)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;

)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)当时,求曲线在点处切线的方程;

(2)当时,求函数的单调区间;

(3)若,证明对任意恒成立.

查看答案和解析>>

同步练习册答案