精英家教网 > 高中数学 > 题目详情

【题目】知函数 (为常数),曲线在点处的切线方程是

(1)的值

(2)的最大值

(3)设,证明:对任意都有.

【答案】(1) (2) (3)证明过程详见解析

【解析】

(1)由,及,解出的值;

(2)求,得的单调性,求出最值;

(3)对任意等价于

,可求得的最大值为

,可得 ,即

命题得证

解:(1)由 ,得

由已知得,解得

(2)由(1)得:

时, ,所以

时, ,所以

∴当时, ;当时,

的单调递增区间是,单调递减区间是

时,

(3)证明:

对任意等价于

,则

得:

∴当 时, 单调递增;

时, 单调递减,

所以的最大值为 ,即

,则

∴当 时, 单调递增, ,故当 时, ,即

∴对任意,都有

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

极坐标系的极点为直角坐标系的原点,极轴为轴的正半轴,两神坐标系中的长度单位相同.已知曲线的极坐标方程为

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)在曲线上求一点,使它到直线 为参数)的距离最短,写出点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别是,椭圆C的上顶点到直线的距离为,过且垂直于x轴的直线与椭圆C相交于MN两点,

且|MN|=1

I)求椭圆的方程;

II过点的直线与椭圆C相交于PQ两点,点),且,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上且满足如下条件的函数组成的集合:①对任意的,都有②存在常数使得对任意的,都有.

1)设是否属于?说明理由;

2)若如果存在使得证明:这样的是唯一的;

3)设试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2+alnx

1)若a=﹣1,求函数fx)的极值,并指出极大值还是极小值;

2)若a=1,求函数fx)在[1e]上的最值;

3)若a=1,求证:在区间[1+∞)上,函数fx)的图象在gx=x3的图象下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy 中,曲线C1的参数方程为:),M是上的动点,P点满足,P点的轨迹为曲线

(1)求的参数方程;

(2)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为A,与的异于极点的交点为B,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60°.

(1)求二面角F-BE-D的余弦值;

(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构对某校高二文科学生的记忆力x和判断力y进行统计分析,得下表数据.

x

6

8

10

12

y

2

3

5

6

参考公式:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究某种图书每册的成本费(元)与印刷数(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.

15.25

3.63

0.269

2085.5

0.787

7.049

表中

(1)根据散点图判断: 哪一个更适宜作为每册成本费(元)与印刷数(千册)的回归方程类型?(只要求给出判断,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程(回归系数的结果精确到0.01);

(3)若每册书定价为10元,则至少应该印刷多少册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)

(附:对于一组数据 ,…, ,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

同步练习册答案