【题目】已知函数.
(1)当时,恒成立,求实数的取值范围;
(2)证明:当时,函数有最小值,设最小值为,求函数的值域.
【答案】(1);(2)答案见解析.
【解析】分析:分析题意,该题可借助于利用导数求函数的单调性和最值的方法进行解答,对于
(1),首先将式子进行转化,构造新函数,借助于导数来完成即可;对于(2)利用导数求函数的最值,不难得到函数的最小值为,则,再利用导数求出其值域即可.
详解:(1)因为对恒成立,
等价于对恒成立,
设
得,
故在上单调递增,
当时,由上知,
所以,
即.
所以实数的取值范围为;
(2)对求导得
记
由(1)知在区间内单调递增,
又,
所以存在唯一正实数,
使得,
∴当时,,函数在区间单调递减;
时,,函数在区间单调递增;
所以在内有最小值,
有题设即,
又因为,
所以
根据(1)知,在内单调递增,,
所以,
令,
则,
函数在区间内单调递增,
所以,
即函数的值域为.
科目:高中数学 来源: 题型:
【题目】已知定义在R上的偶函数f(x)和奇函数g(x)满足.
(1)求函数f(x)和g(x)的表达式;
(2)当时,不等式恒成立,求实数a的取值范围;
(3)若方程在上恰有一个实根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下给出了4个命题:
(1)两个长度相等的向量一定相等;
(2)相等的向量起点必相同;
(3)若,且,则;
(4)若向量的模小于的模,则.
其中正确命题的个数共有( )
A.3 个B.2 个C.1 个D.0个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)过点作互相垂直的两条直线,,与曲线交于,两点与曲线交于,两点,线段,的中点分别为,,求证:直线过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若函数的图像与轴无交点,求的取值范围;
(2)若方程在区间上存在实根,求的取值范围;
(3)设函数,,当时若对任意的,总存在,使得,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点.
(1)求抛物线C的方程;
(2)设过点的直线分别与抛物线C交于点D,E和点G,H,且,求四边形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在同一直角坐标系中,经过伸缩变换后,曲线C的方程变为.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,直线/的极坐标方程为.
(1)求曲线C和直线l的直角坐标方程;
(2)过点作l的垂线l0交C于A,B两点,点A在x轴上方,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com