精英家教网 > 高中数学 > 题目详情
已知P(x,y)为圆C:x2+y2-4x-14y+45=0上的动点,
(1)求x2+y2+4x-6y+13的最大值和最小值;
(2)求的最大值和最小值。
解:(1)设Q(-2,3),则x2+y2-4x+6y+13=(x+2)2+(y-3)2=|PQ|2
∴ |PQ|max=|CQ|+R=6,|PQ|min=|CQ|-R=2
所以,原式的最大值为72,原式的最小值为8。
(2)依题意,k为(-2,3)与圆C上任意一点连线的斜率,
它的最大值和最小值分别是过(-2,3)的圆C的切线的斜率,
所以,kmax=tan(45°+30°)=2+,kmin=tan(45°-30°)=2-,(注意kQC=1)。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

附加题:如图,过椭圆C:
y2
a2
+
x2
b2
=1
(a>b>0)上一动点P引圆x2+y2=b2的两条切线PA,PB(A,B为切点).直线AB与x轴、y轴分别交于M、N两点.
①已知P点的坐标为(x0,y0),并且x0•y0≠0,试求直线AB的方程;    
②若椭圆的短轴长为8,并且
a2
|OM|2
+
b2
|ON|2
=
25
16
,求椭圆C的方程;
③椭圆C上是否存在P,由P向圆O所引两条切线互相垂直?若存在,求出存在的条件;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江苏)A.[选修4-1:几何证明选讲]
如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.
求证:∠E=∠C.
B.[选修4-2:矩阵与变换]
已知矩阵A的逆矩阵A-1=
-
1
4
3
4
1
2
-
1
2
,求矩阵A的特征值.
C.[选修4-4:坐标系与参数方程]
在极坐标中,已知圆C经过点P(
2
π
4
),圆心为直线ρsin(θ-
π
3
)=-
3
2
与极轴的交点,求圆C的极坐标方程.
D.[选修4-5:不等式选讲]
已知实数x,y满足:|x+y|<
1
3
,|2x-y|<
1
6
,求证:|y|<
5
18

查看答案和解析>>

科目:高中数学 来源:设计必修二数学北师版 北师版 题型:044

已知圆C:(x+2)2+y2=1,P(x,y)为圆上任意一点,

(1)求的最大值、最小值;

(2)求x-2y的最大值、最小值.

查看答案和解析>>

同步练习册答案