精英家教网 > 高中数学 > 题目详情

,当时,对应值的集合为.
(1)求的值;(2)若,求该函数的最值.

(1) (2)42

解析试题分析:(1)由题意可知是方程的两根,根据韦达定理可求出.
(2)由(1)知,进而转化为定义域确定、对称轴确定的二次函数在闭区间的最值问题,详细见解析.
试题解析:(1)当时,即,则为其两根,
由韦达定理知:所以
所以.
(2)由(1)知:,因为
所以,当时,该函数取得最小值
又因为
所以当时,该函数取得最大值.
考点:二次函数的最值问题及一元二次方程根与系数的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数

(1)请在所给的平面直角坐标系中画出函数的图像;
(2)根据函数的图像回答下列问题:
①求函数的单调区间;
②求函数的值域;
③求关于的方程在区间上解的个数.
(回答上述3个小题都只需直接写出结果,不需给出演算步骤)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)用定义证明上单调递增;
(2)若上的奇函数,求的值;
(3)若的值域为D,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为R的函数是奇函数.
(1)求的值;
(2)证明函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实常数).
(1)当时,证明:
不是奇函数;②上的单调递减函数.
(2)设是奇函数,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)若恒成立,求的最大值;
(2)若为常数,且,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知偶函数满足:当时,,当时,.
(Ⅰ).求表达式;
(Ⅱ).若直线与函数的图像恰有两个公共点,求实数的取值范围;
(Ⅲ).试讨论当实数满足什么条件时,直线的图像恰有个公共点,且这个公共点均匀分布在直线上.(不要求过程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,证明:函数不是奇函数;
(2)设函数是奇函数,求的值;
(3)在(2)条件下,判断并证明函数的单调性,并求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义域为的函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并证明.

查看答案和解析>>

同步练习册答案