精英家教网 > 高中数学 > 题目详情
4.在等比数列{an}中,a1=2,q=2,则其通项公式为(  )
A.an=2n-1B.an=2nC.an=2n+1D.an=2n+1

分析 利用${a}_{n}={a}_{1}•{q}^{n-1}$直接代入计算即可.

解答 解:∵a1=2,q=2,
∴${a}_{n}={a}_{1}•{q}^{n-1}$=2•2n-1=2n
故选:B.

点评 本题考查等比数列的通项,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设数列{an}满足a1=1,an+1=3an+2,则{an}的通项公式为(  )
A.an=2•3n-1B.an=2•3n-1-1C.an=2•3n-1+1D.an=2•3n+1-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知点A、B的坐标分别是(0,-1),(0,1),直线AM,BM相交于点M,且直线AM的斜率与BM的斜率的积是$-\frac{1}{4}$.
(1)设M的轨迹为曲线C,求曲线C的方程;
(2)若直线y=k(x-1)与该曲线有两个交点P、Q,且以PQ为直径的圆过坐标原点O,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆锥SO的高为4,体积为4π,则底面半径r=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设S为{1,2,…,9}的子集,且S中任意两个不同的数之和所得的数两两不同,问:S中最多有多少个元素?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若$\overrightarrow{AB}$=(x,y),x∈{0,1,2},y∈{-2,0,1),$\vec a$=(1,-1),则$\overrightarrow{AB}$与$\overrightarrow{a}$的夹角为锐角的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,从宾馆A到火车站B有A-C-B、A-D-B两条路线.出租车司机准备开车从宾馆送某旅客到火车站,若各路段发生堵车与否是相互独立的,且各路段发生堵车事件的概率如图所示(例如A-C-B算作两个路段;路段AC发生堵车事件的概率为$\frac{1}{10}$,路段CB发生堵车事件的概率为$\frac{1}{8}$).
(1)请你为该出租车司机选择一条由A到B的路线,
使得途中发生堵车事件的概率较小;
(2)若记路线A-C-B中遇到堵车路段的个数为ξ,求ξ的分布列及Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在菱形ABCD中,|$\overrightarrow{AB}$|=2,∠BAD=$\frac{π}{3}$,E为CD的中点,则$\overrightarrow{AC}$•$\overrightarrow{BE}$=(  )
A.-3B.3C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.定义:如果一个数列的任意连续三项均能构成一个三角形的三边长,那么称此数列为“三角形”数列.已知数列{an}满足an=dn2(d>0).
(Ⅰ)试判断数列{an}是否是“三角形”数列,并说明理由;
(Ⅱ)在数列{bn}中,b1=1,前n项和Sn满足3Sn+1-3=2Sn
(1)证明:数列{bn}是“三角形”数列;
(2)设d=1,数列{$\frac{{{a}_{n}b}_{n}}{n}$}的前n项和为Tn,若不等式Tn+($\frac{2}{3}$)n•$\frac{a}{n}$-9<0对任意的n∈N*恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案