精英家教网 > 高中数学 > 题目详情

【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在内的产品为合格品,否则为不合格品.

注:表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.

产品重量(克)

频数

6

8

14

8

4

(1)根据上面表1中的数据在图2中作出甲流水线样本的频率分布直方图;

(2)若以频率作为概率,试估计从两条流水线上分别任取1件产品,该产品恰好是合格品的概率分别是多少;

(3)由以上统计数据完成下面列联表,并回答有多大的把握认为产品的包装质量与两条自动包装流水线的选择有关.

甲流水线

乙流水线

合计

合格

不合格

合计

参考公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)见解析;(2)从甲流水线上任取1件产品,该产品恰好是合格品的概率为;从乙流水线上任取1件产品,该产品恰好是合格品的概率为0.9.(3)见解析

【解析】

(1)根据所给的每一组的频数和样本容量求出每一组的频率,作出频率分布直方图.

(2)根据所给的样本中的合格品数,除以样本容量做出合格品的频率,可估计从两条流水线上任取一件产品该产品为合格品的概率;

(3)根据所给的数据,列出列联表,根据所给的观测值的公式,代入数据求出观测值,同临界值进行比较,得到有90%的把握认为产品的包装质量与两条自动包装流水线的选择有关.

(1)甲流水线样本的频率分布直方图如下:

(2)由表1知甲流水线样本中合格品数为

故甲流水线样本中合格品的频率为

由图1知乙流水线样本中合格品的频率为

据此可估计从甲流水线上任取1件产品,该产品恰好是合格品的概率为

从乙流水线上任取1件产品,该产品恰好是合格品的概率为0.9.

(3)由(2)知甲流水线样本中合格品数为30,乙流水线样本中合格品数为.

列联表如下:

甲流水线

乙流水线

合计

合格

30

36

66

不合格

10

4

14

合计

40

40

80

∴有的把握认为产品的包装质量与两条自动包装流水线的选择有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,底面为等腰梯形,丄底面.

(1)证明:平面平面

(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)对于任意时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,已知动直线的参数方程:,(为参数,) ,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程;

(Ⅱ)若直线与曲线恰好有2个公共点时,求直线的一般方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图像经过点,且关于直线对称,则下列结论正确的是( )

A. 上是减函数

B. 函数的最小正周期为

C. 的解集是

D. 的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对n个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n的最小值,使得在这n个数中一定存在六个数,其中一个能被另外五个整除.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆过点,且离心率.

1)求椭圆的方程;

2)直线的斜率为,直线与椭圆交于两点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)当时,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是过点夹角为的两条直线,且与圆心为,半径长为的圆分别相切,设圆周上一点的距离分别为,那么的最小值为____

查看答案和解析>>

同步练习册答案