精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3x2+1,g(x)=
x+
1
4x
,x>0
-x2-6x-8,x≤0
,则方程g[f(x)]-a=0(a为正实数)的根的个数不可能 为(  )
A、3个B、4个C、5个D、6个
分析:由已知中函数的解析式,我们易求出f(x)与y=m的交点情况为:当a<-3,或a>1时,有一个交点;当a=-3,或a=1时,有两个交点;当-3<a<1时,有三个交点;g(x)与y=a点情况为(x)与y=a的交点情况为:当0<a<1时有两个交点,一个在区间(-4,-3)上,一个在区间(-3,-2)上;当a=1时有两个交点,一个为-3,一个为
1
2
;当a>1时有两个交点,一个在区间(0,
1
2
)上,一个在区间(
1
2
-,1)上.分类讨论后,即可得到方程g[f(x)]-a=0(a为正实数)的根的个数所有的情况,进而得到答案.
解答:解:∵函数f(x)=x3-3x2+1,g(x)=
x+
1
4x
,x>0
-x2-6x-8,x≤0

∴当a=1时,若方程g[f(x)]-a=0,则:
f(x)=-3,此时方程有2个根
或f(x)=
1
2
,此时方程有3个根
故方程g[f(x)]-a=0可能共有5个根;
当0<a<1时,方程g[f(x)]-a=0,则:
f(x)∈(-4,-3),此时方程有1个根
或f(x)∈(-3,-2),此时方程有3个根
故方程g[f(x)]-a=0可能共有4个根;
当a>1时,方程g[f(x)]-a=0,则:
可能有4个、5个或6个根.
故选A.
点评:本题考查的知识点是根的存在性及根的个数判断,其中分析内外函数的图象是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案