精英家教网 > 高中数学 > 题目详情
16.已知集合A={y|y=log${\;}_{\frac{1}{2}}$x,0<x<1},B={y|y=2x,x<0].则A∩B等于(  )
A.{y|0<y<$\frac{1}{2}$}B.{y|0<y<1}C.{y|$\frac{1}{2}$<y<1}D.

分析 求出A与B中y的范围确定出A与B,找出两集合的交集即可.

解答 解:由A中y=log${\;}_{\frac{1}{2}}$x,0<x<1,得到y>0,即A={y|y>0},
由B中y=2x,x<0,得到0<y<1,即B={y|0<y<1},
则A∩B={y|0<y<1},
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=-x2+(a+4)x+2+b,log2f(1)=3,且g(x)=f(x)-2x为偶函数.
(1)求函数f(x)的解析式;
(2)若函数f(x)在区间[m,+∞)的最大值为1-3m,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,△PAD为边长为2的等边三角形,ABCD为菱形,∠DAB=60°,E为AD的中点,平面PAD⊥平面ABCD,F为棱PC上一点,
(1)证明:平面PAD⊥平面BEF;
(2)若PA∥平面BEF,求三棱锥E-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f1(x)=$\frac{1}{2}$x2,f2(x)=alnx(其中a>0).
(1)求函数f(x)=f1(x)-f2(x)的极值;
(2)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间($\frac{1}{e}$,e)内有两个零点,求正实数a取值范围;
(3)求证:当x>0时,lnx+$\frac{3}{4{x}^{2}}$-$\frac{1}{{e}^{x}}$>0.(说明:e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.tan300°+$\frac{cos(-405°)}{sin750°}$的值为$\sqrt{2}-\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.解不等式:x2-x+m>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和Sn 满足:Sn=(-1)n+1n,求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知$\overrightarrow{a}$,$\overrightarrow{b}$为非零向量,根据平面向量数量积的定义证明向量性质:|$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|,并用该性质证明不等式:(mp+nq)2≤(m2+n2)(p2+q2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义:$|\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}|$=a1a4-a2a3,若函数f(x)=$|\begin{array}{l}{\sqrt{3}}&{1}\\{cosx}&{sinx}\end{array}|$,将其图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{3}$B.$\frac{2}{3}$πC.$\frac{π}{6}$D.$\frac{5}{6}$π

查看答案和解析>>

同步练习册答案