精英家教网 > 高中数学 > 题目详情

【题目】的内角的对边分别为,已知 .

(1)求角

(2)若点满足,求的长.

【答案】(1);(2)

【解析】

1)解法一:对条件中的式子利用正弦定理进行边化角,得到的值,从而得到角的大小;解法二:对对条件中的式子利用余弦定理进行角化边,得到的值,从而得到角的大小;解法三:利用射影定理相关内容进行求解.

2)解法一:在中把边和角都解出来,然后在中利用余弦定理求解;解法二:在中把边和角都解出来,然后在中利用余弦定理求解;解法三:将表示,平方后求出的模长.

(1)【解法一】由题设及正弦定理得

所以.

由于,则.

又因为

所以.

【解法二】

由题设及余弦定理可得

化简得.

因为,所以.

又因为

所以.

【解法三】

由题设

结合射影定理

化简可得.

因为.所以.

又因为

所以.

(2)【解法1】由正弦定理易知,解得.

又因为,所以,即.

中,因为,所以

所以在中,

由余弦定理得

所以.

【解法2

中,因为,所以.

由余弦定理得.

因为,所以.

中,

由余弦定理得

所以.

【解法3

中,因为,所以.

因为,所以.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的长轴长为,过点的直线轴垂直,椭圆的离心率, 为椭圆的左焦点,.

求此椭圆的方程;

是此椭圆上异于的任意一点, , 为垂足,延长到点使得.连接并延长,交直线于点的中点,判定直线与以为直径的圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)过原点作函数的切线,求的方程;

(Ⅱ)若对于任意恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知标准方程下的椭圆的焦点在轴上,且经过点它的一个焦点恰好与抛物线的焦点重合.椭圆的上顶点为过点的直线交椭圆于两点,连接,记直线的斜率分别为.

(1)求椭圆的标准方程;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共13分)

已知1 ,对于表示UV中相对应的元素不同的个数.

)令,存在m,使得,写出m的值;

)令,若,求证:

)令,若,求所有之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对任意实数abc,给出下列命题:

①“”是“”的充要条件

②“是无理数”是“a是无理数”的充要条件;

③“”是“”的充分不必要条件

④“”是“”的必要不充分条件,

其中真命题的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【题目】已知抛物线的焦点曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点轴的平行线交抛物线的准线于,直线交抛物线于点.

(Ⅰ)求抛物线的方程;

(Ⅱ)求证:直线过定点,并求出此定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:

损坏餐椅数

未损坏餐椅数

总 计

学习雷锋精神前

50

150

200

学习雷锋精神后

30

170

200

总 计

80

320

400

(1)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?

(2)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分14分)如图,在四棱锥中, 平面,底面是菱形, 的交点, 上任意一点.

1)证明:平面平面

2)若平面,并且二面角的大小为,求的值.

查看答案和解析>>

同步练习册答案