精英家教网 > 高中数学 > 题目详情

【题目】如图,已知在算法中分别表示取商和取余数.为了验证三位数卡普雷卡尔数字黑洞(即输入一个无重复数字的三位数,经过如图的有限次的重排求差计算,结果都为495.小明输入,则输出的

A.3B.4C.5D.6

【答案】B

【解析】

首先读懂程序,输入任意一个无重复数字的三位数,将其个位,十位,百位重新排列,组成一个最大数和一个最小数,写出每次循环的结果,使差是495结束循环,即可得出答案.

先读懂程序:输入任意一个无重复数字的三位数,

将其个位,十位,百位重新排列,组成一个最大数和一个最小数,

然后作差,若差不为495,则继续此过程,经过有限次步骤之后,最后结果一定是495.

对于输入的325,第一次循环:

重新排列后,最大数为532,最小数为235,相减得297,然后

第二次循环:重新排列后,最大数为972,最小数为279,相减得693,然后

第三次循环:重新排列后,最大数为963,最小数为369,相减得594,然后

第四次循环:重新排列后,最大数为954,最小数为459,相减得495,然后

结束循环,

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设有编号分别为12345678的八个小球和编号为12345678的八个盒子.现将这八个小球随机放入八个盒子内,要求每个盒子内放一个球,要求编号为偶数的小球在编号为偶数的盒子内,且至少有四个小球在相同编号的盒子内,则一共有______种投放方法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心为,左、右焦点分别为,上顶点为,右顶点为,且成等比数列.

1)求椭圆的离心率;

2)判断的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设成立; 成立. 如果“”为真,“”为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在算法中分别表示取商和取余数.为了验证三位数卡普雷卡尔数字黑洞(即输入一个无重复数字的三位数,经过如图的有限次的重排求差计算,结果都为495.小明输入,则输出的

A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面平面,在中,的中点,四边形是等腰梯形,

(Ⅰ)求异面直线所成角的正弦值;

(Ⅱ)求证:平面平面

(Ⅲ)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且过点

1)求C的方程;

2)若直线lC有且只有一个公共点,l与圆x2+y26交于AB两点,直线OAOB的斜率分别记为k1k2.试判断k1k2是否为定值,若是,求出该定值;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCDADBCABACAD3PABC4.

1)求异面直线PBCD所成角的余弦值;

2)求平面PAD与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点 分别为椭圆的右顶点、上顶点和右焦点,且

(1)求椭圆的方程;

(2)已知直线 被圆 所截得的弦长为,若直线与椭圆交于 两点,求面积的最大值.

查看答案和解析>>

同步练习册答案