精英家教网 > 高中数学 > 题目详情

【题目】如图,在平面直角坐标系中,椭圆过点,且椭圆的离心率为,直线与椭圆相交于两点,线段的中垂线交椭圆两点.

1)求椭圆的标准方程;

2)求线段长的最大值;

3)求的值.

【答案】1230

【解析】

1)由离心率,解得,再将点代入椭圆方程,可得,解出即可求解.

2)设,将直线与椭圆方程联立,利用韦达定理求出的中点,求出直线的方程为,将其与椭圆方程联立,利用弦长公式即可求解.

3)利用向量数量积的坐标运算,结合(2),利用韦达定理即可求解.

解:(1)设椭圆的焦距为

,可知.

又因为椭圆过点,所以

解得,所以椭圆的标准方程为.

2)设

又直线与椭圆相交于两点,

所以,且,则.

的中点,则

所以的中垂线的方程为,即直线的方程为

,则

所以

,所以当时,.

3)由(2)知,

由(2)知

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为实现国民经济新三步走的发展战略目标,国家加大了扶贫攻坚的力度,某地区在2015年以前的年均脱贫率(脱贫的户数占当年贫困户总数的比)为70%,2015年开始全面实施精准扶贫政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加户数占2019年贫困总户数的比)及该项目的脱贫率见下表:

实施项目

种植业

养殖业

工厂就业

参加占户比

45

45

10

脱贫率

96

96

90

那么2019年的年脱贫率是实施精准扶贫政策前的年均脱贫率的( )倍.

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:ab0)过点E1),其左、右顶点分别为AB,左、右焦点为F1F2,其中F10).

1)求椭圆C的方程:

2)设Mx0y0)为椭圆C上异于AB两点的任意一点,MNAB于点N,直线lx0x+2y0y40,设过点Ax轴垂直的直线与直线l交于点P,证明:直线BP经过线段MN的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2若函数有两个零点分别记为

的取值范围;

求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为迎接“618年中庆典,拟推出促销活动,活动规则如下:①活动期间凡在商场内购物,每满673元可参与一次现金红包抽奖,且互不影响,详细如下表:

奖项

一等奖

二等奖

奖金

200元现金红包

优惠餐券1张(价值50元)

获奖率

30%

70%

②活动期间凡在商场内购物,每满2019元可参与消费返现,返现金额为实际消费金额的15%.规定每位顾客只可选择参加其中一种优惠活动.

1)现有顾客甲在商场消费2019元,若其选择参与抽奖,求其可以获得现金红包的概率.

2)现有100名消费金额为2019元的顾客正在等待抽奖,假如你是该商场的活动策划人,你更希望顾客参与哪项优惠活动?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,平面平面.

1)求证:平面

2)求证:平面

3)在棱上是否存在一点E,使得二面角的大小为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中,四边形是边长为2的正方形,平面.

(1)设BDAC的交点为O,求证:平面

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.

1)求的分布列及数学期望;

2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?

3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:

时长

(015]

(1530]

(3045]

(4560]

人数

16

45

34

5

在(2)的活动条件下,每个品牌各应该投放多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的长轴长为,点为椭圆上的三个点,为椭圆的右端点,过中心,且

1)求椭圆的标准方程;

2)设是椭圆上位于直线同侧的两个动点(异于),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.

查看答案和解析>>

同步练习册答案