精英家教网 > 高中数学 > 题目详情
7.已知圆C:(x-3)2+(y+1)2=4,过P(1,5)的直线l与圆C相切,则直线l的方程为x=1或4x+3y-19=0.

分析 设出切线方程,求出圆的圆心与半径,利用圆心到直线的距离等于半径,求出k,写出切线方程即可.

解答 解:设切线方程为y-5=k(x-1),即kx-y-k+5=0,
∵圆心(3,-1)到切线l的距离等于半径2,
∴$\frac{|2k+6|}{\sqrt{{k}^{2}+1}}$=2,解得k=-$\frac{4}{3}$,
∴切线方程为4x+3y-19=0,
当过点M的直线的斜率不存在时,其方程为x=1,圆心(3,-1)到此直线的距离等于半径2,
故直线x=1也适合题意.
所以,所求的直线l的方程是x=1或4x+3y-19=0.
故答案为x=1或4x+3y-19=0.

点评 本题考查圆的切线方程的求法,注意直线的斜率存在与不存在情况,是本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.等比数列{an}中,a3=2,a5=6,则a9=54.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=lg(5-x).
(1)若10f(k)=10f(2)×10f(3),求k的值;
(2)若f(2m-1)<f(m+1),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线l:y=k(x-2)与抛物线C:y2=8x交于A,B两点,F为抛物线C的焦点,若|AF|=3|BF|,则直线l的倾斜角为$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合M={-1,1,2,4},N={1,2,4,16},给出下列四个对应法则:①y=log2|x|,②y=x+1,③y=2|x|,④y=x2,请由函数定义判断,其中能构成从M到N的函数的是(  )
A.①③B.①②C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x||x-1|<1},B={x|1-$\frac{1}{x}$≥0},则A∩B=(  )
A.{x|1≤x<2}B.{x|0<x<2}C.{x|0<x≤1}D.{x|0<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,ABCD是边长为a的菱形,∠BAD=60°,EB⊥平面ABCD,FD⊥平面ABCD,EB=2FD=$\sqrt{3}$a
(Ⅰ)求证:EF丄AC;
(Ⅱ)求直线CE与平面ABF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式(x2-4)(x-6)2≤0的解集是{x|-2≤x≤2或者x=6}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=m(x-2m)(x+m+3),$g(x)={2^x}-\frac{1}{2}$,若对任意的x∈R,都有f(x)<0或g(x)<0,则实数m的取值范围是(-2,-$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案