A. | 既是奇函数又是偶函数 | B. | 偶函数,且有两个零点 | ||
C. | 奇函数,且有三个零点 | D. | 偶函数,且只有一个极值点 |
分析 由已知求出|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}=cosx+xsinx$,代入投影数量公式得到f(x),求导后再借助于函数零点存在性定理得答案.
解答 解:∵向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(1,x),
∴|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}=cosx+xsinx$,
∴向量$\overrightarrow{b}$在$\overrightarrow{a}$上投影的数量f(x)=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}=xsinx+cosx$.
∵x∈(-π,π),且f(-x)=-xsin(-x)+cos(-x)=xsinx+cosx=f(x),
∴f(x)为偶函数;
由f(x)=xsinx+cosx,得:
f′(x)=sinx+xcosx-sinx=xcosx,
当x∈(0,$\frac{π}{2}$)时,f′(x)>0,此时函数为增函数,
当x∈($\frac{π}{2},π$)时,f′(x)<0,此时函数为减函数.
∵f(0)=1>0,且f(π)=-1<0,
∴函数f(x)=xsinx+cosx在[0,π)上仅有一个零点.
由偶函数的对称性可知,在(-π,0)上f(x)=xsinx+cosx也有一个零点.
∴f(x)=xsinx+cosx是偶函数,且有两个零点.
故选:B.
点评 本题考查平面向量的数量积运算,考查了向量在向量方向上投影的数量的求法,训练了利用导数研究函数的极值,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com