精英家教网 > 高中数学 > 题目详情
8.设向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(1,x),记f(x)为向量$\overrightarrow{b}$在$\overrightarrow{a}$上投影的数量,已知x∈(-π,π),则f(x)为(  )
A.既是奇函数又是偶函数B.偶函数,且有两个零点
C.奇函数,且有三个零点D.偶函数,且只有一个极值点

分析 由已知求出|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}=cosx+xsinx$,代入投影数量公式得到f(x),求导后再借助于函数零点存在性定理得答案.

解答 解:∵向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(1,x),
∴|$\overrightarrow{a}$|=1,$\overrightarrow{a}•\overrightarrow{b}=cosx+xsinx$,
∴向量$\overrightarrow{b}$在$\overrightarrow{a}$上投影的数量f(x)=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}|}=xsinx+cosx$.
∵x∈(-π,π),且f(-x)=-xsin(-x)+cos(-x)=xsinx+cosx=f(x),
∴f(x)为偶函数;
由f(x)=xsinx+cosx,得:
f′(x)=sinx+xcosx-sinx=xcosx,
当x∈(0,$\frac{π}{2}$)时,f′(x)>0,此时函数为增函数,
当x∈($\frac{π}{2},π$)时,f′(x)<0,此时函数为减函数.
∵f(0)=1>0,且f(π)=-1<0,
∴函数f(x)=xsinx+cosx在[0,π)上仅有一个零点.
由偶函数的对称性可知,在(-π,0)上f(x)=xsinx+cosx也有一个零点.
∴f(x)=xsinx+cosx是偶函数,且有两个零点.
故选:B.

点评 本题考查平面向量的数量积运算,考查了向量在向量方向上投影的数量的求法,训练了利用导数研究函数的极值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知抛物线y2=2px(p>0)上的一点M(1,m)到其焦点的距离为5,则实数p=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知AB为⊙O的直径,CD是弦,AB⊥CD于点E,OF⊥AC于点F.
(1)求证:OF∥BC;
(2)若EB=5cm,CD=10$\sqrt{3}$cm,求OE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知{an}是一个首项为a1,公差为d的等差数列.试求:Sn=a1${C}_{n}^{0}$+a2${C}_{n}^{1}$+…+an+1${C}_{n}^{n}$(n≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα-3cosα=0,则sin2α+sinαcosα-2=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}$sin2x+cosx,x∈R.
(1)证明:f(x)的最小正周期为2π;
(2)若关于x的方程f(x)-a=0在区间[$\frac{π}{6}$,π]上有两个不同的实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sin(π-α)-sin($\frac{3π}{2}$+α)=$\frac{\sqrt{2}}{3}$($\frac{3π}{2}$<α<2π),求:
(1)sin3α+cos3α的值;
(2)sin4α-cos4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}满足,a1=2,$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+2(n≥2),则数列{an}的通项公式an=$\frac{2}{4n-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(x,-4),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=6.

查看答案和解析>>

同步练习册答案