精英家教网 > 高中数学 > 题目详情

【题目】某气象站统计了4月份甲、乙两地的天气温度(单位),统计数据的茎叶图如图所示,

1)根据所给茎叶图利用平均值和方差的知识分析甲,乙两地气温的稳定性;

2)气象主管部门要从甲、乙两地各随机抽取一天的天气温度,若甲、乙两地的温度之和大于或等于,则被称为甲、乙两地往来温度适宜天气,求甲、乙两地往来温度适宜天气的概率.

【答案】1)见解析 2

【解析】

1)分别计算平均值和方差比较大小得到答案.

2)列出所有可能性共有种可能,满足条件的共有种,计算得到答案.

1)根据题意可知:

∴甲、乙两地的整体气温水平相当,乙地的气温水平更稳定一些.

2)气象主管部门要从甲、乙两地连续10天中各随机抽取一天的天气温度,

设随机抽取的甲、乙两地天气温度分别为

则所有为:

,共计25个,

的基本事件有

,共计14个,

故满足的基本事件共有14(个),

于是甲、乙两地往来温度适宜天气的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为的准线,轴,轴,交抛物线两点,交两点,已知的面积是2倍,则中点轴的距离的最小值为(

A.B.1C.D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的偶函数,周期是4,当时,.则方程的根的个数为( )

A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数为(

为真为真的充分不必要条件;

②若数据的平均数为1,则的平均数为2

③在区间上随机取一个数,则事件发生的概率为

④已知随机变量服从正态分布,且,则.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校进行自主招生测试,报考学生有500人,其中男生300人,女生200人,为了研究学生的成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们测试的分数,然后按性别分为男、女两组,再将两组学生的分数分成4组:分别加以统计,得到如图所示的频率分布直方图.

(Ⅰ)根据频率分布直方图可以估计女生测试成绩的平均值为103.5,请你估计男生测试成绩的平均值,由此推断男、女生测试成绩的平均水平的高低;

(Ⅱ)若规定分数不小于110分的学生为优秀生,请你根据已知条件完成列联表,并判断是否有的把握认为优秀生与性别有关

优秀生

非优秀生

合计

男生

女生

合计

参考公式:.

参考数据:

P

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从抛物线上任意一点Px轴作垂线段,垂足为Q,点M是线段上的一点,且满足

(1)求点M的轨迹C的方程;

(2)设直线与轨迹c交于两点,TC上异于的任意一点,直线分别与直线交于两点,以为直径的圆是否过x轴上的定点?若过定点,求出符合条件的定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为,其中为参数,.在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

同步练习册答案