(1)若f(1)=1且对任意n∈N*,都有gn(x0)=x0,求所有x0组成的集合;
(2)若f(1)>3,是否存在区间A,对n∈N*,当且仅当x∈A时,就有gn(x)<0?如果存在,求出这样的区间A;如果不存在,说明理由.
解析:(1)由f(1)=11=2-aa=1.
∴f(x)=2x3-x2.当n=1时,g1(x0)
=f(x0)=2x03-x02=x0x0(2x02-x0-1)=0,
∴x0=0或x0=1或x0=.由题设,g2(x0)=f[g1(x0)]=f(x0)=x0,假设gk(x0)=x0,当n=k+1时,gk+1(x0)=f[gk(x0)]=f(x0)=x0,
∴gn(x0)=x0对n=k+1时也成立.
∴当x0满足g1(x0)=x0时,就有gn(x0)=x0.
∴所有x0组成的集合为{0,1,}.
(2)若f(1)=2-a>
∴若对n∈N*有gn(x)<0,必须且只需g1(x)<0.∴A=(-∞,).
科目:高中数学 来源: 题型:
(1)若f(1)=1且对任意n∈N*,都有gn(x0)=x0,求所有x0组成的集合;
(2)若f(1)>3,是否存在区间A,对n∈N*,当且仅当x∈A时,就有gn(x)<0?如果存在,求出这样的区间A;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
A.-37 B.-29 C.-5 D.-11
查看答案和解析>>
科目:高中数学 来源: 题型:
A.-37 B.-29 C.-5 D.-11
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com