精英家教网 > 高中数学 > 题目详情
选修4-1:几何证明选讲
如图,已知PA与圆O相切于点A,直径BC⊥OP,连接AB交PO于点D
(Ⅰ)求证:PA=PD;
(Ⅱ)求证:AC•AP=AD•OC.
分析:(I)根据弦切角定理,可得∠PAB=∠ACB,根据圆周角定理可得∠BAC=90°,结合BC⊥OP,根据同角的余角相等及对顶角相等可得∠PDA=∠PAB,即△PAD为等腰三角形
(II)连接OA,结合(I)中结论,可得△OAC∽△PAD,根据相似三角形对应边成比例,可得AC•AP=AD•OA,再由OA,OC均为圆半径,长度相等,可得答案.
解答:证明:(I)∵PA与圆O相切于点A,
∴∠PAB=∠ACB
∵BC为圆O的直径,
∴∠BAC=90°
∴∠ACB=90°-∠B
∵BC⊥OP,
∴∠BDO=90°-∠B
∴∠BDO=∠PDA=∠PAB
即△PAD为等腰三角形
∴PA=PD;
(Ⅱ)连接OA
在△OAC和△PAD中
∴∠OAC=∠OCA=∠PDA=∠PAB
∴△OAC∽△PAD
AP
OA
=
AD
AC

即AC•AP=AD•OA
又∵OA=OC
∴AC•AP=AD•OC
点评:本题考查的知识点是弦切角定理,圆周角定理,等腰三角形的判定,相似三角形的判定与性质,难度不大,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案