精英家教网 > 高中数学 > 题目详情
(2012•南京二模)甲、乙两班各派三名同学参加青奥知识竞赛,每人回答一个问题,答对得10分,答错得0分,假设甲班三名同学答对的概率都是
2
3
,乙班三名同学答对的概率分别是
2
3
2
3
1
2
,且这六名同学答题正确与否相互之间没有影响.
(1)用X表示甲班总得分,求随机变量X的概率分布和数学期望;
(2)记“两班得分之和是30分”为事件A,“甲班得分大于乙班得分”为事件B,求事件A,B同时发生的概率.
分析:(1)确定随机变量X的可能取值,求出相应的概率,即可求得随机变量X的概率分布列和数学期望;
(2)分别求得事件A,B的概率,利用互斥事件的概率公式,可得结论.
解答:解:(1)随机变量X的可能取值是0,10,20,30,且
P(X=0)=
C
0
3
(1-
2
3
3=
1
27
,P(X=10)=
C
1
3
2
3
•(1-
2
3
2=
2
9

P(X=20)=
C
2
3
2
3
2(1-
2
3
)=
4
9
,P(X=30)=
C
3
3
2
3
3=
8
27

所以,X的概率分布为
X 0 10 20 30
P
1
27
2
9
4
9
8
27
…3分
随机变量X的数学期望E(X)=0×
1
27
+10×
2
9
+20×
4
9
+30×
8
27
=20.…5分
(2)甲班得20分,且乙班得10分的概率是:
C
2
3
2
3
2(1-
2
3
)×[
2
3
×(1-
2
3
)×(1-
1
2
)+(1-
2
3
)×
2
3
×(1-
1
2
)+(1-
2
3
)×(1-
2
3
)×
1
2
]=
10
34

甲班得30分,且乙得班0分的概率是:
C
3
3
2
3
3×(1-
2
3
)×(1-
2
3
)×(1-
1
2
)=
4
35

所以事件A,B同时发生的概率为
10
34
+
4
35
=
34
243
.   …10分
点评:本题考查互斥事件概率公式的运用,考查离散型随机变量的分布列与数学期望,确定变量的取值,求出相应的概率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•南京二模)下列四个命题
①“?x∈R,x2-x+1≤1”的否定;
②“若x2+x-6≥0,则x>2”的否命题;
③在△ABC中,“A>30°“sinA>
12
”的充分不必要条件;
④“函数f(x)=tan(x+φ)为奇函数”的充要条件是“φ=kπ(k∈z)”.
其中真命题的序号是
.(把真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)设向量
a
=(2,sinθ),
b
=(1,cosθ),θ为锐角.
(1)若
a
b
=
13
6
,求sinθ+cosθ的值;
(2)若
a
b
,求sin(2θ+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)已知
a+3ii
=b-i
,其中a,b∈R,i为虚数单位,则a+b=
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)在面积为2的△ABC中,E,F分别是AB,AC的中点,点P在直线EF上,则
PC
PB
+
BC
2
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南京二模)一块边长为10cm的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形作侧面,以它们的公共顶点p为顶点,加工成一个如图所示的正四棱锥形容器.当x=6cm时,该容器的容积为
48
48
cm3

查看答案和解析>>

同步练习册答案