精英家教网 > 高中数学 > 题目详情

【题目】已知定义在上的偶函数满足,且当时, ,若在内关于的方程恰有3个不同的实数根,则的取值范围是 ( )

A. B. C. D.

【答案】C

【解析】,

,即

∴ 函数f(x)的周期为4。

x[0,2]x[2,0]

f(x)是偶函数,

f(x)loga(x+2)=0,f(x)=loga(x+2)

作出函数的图象如图所示

①当0<a<1函数g(x)=loga(x+2)单调递减此时两函数的图象只有1个交点不满足条件

a>1要使方程f(x)loga(x+2)=0恰有3个不同的实数根,则需函数f(x)g(x)=loga(x+2)的图象有3个不同的交点,

则需满足解得

a的取值范围是

答案:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 .

1)令,求的单调区间;

2)已知处取得极大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的40人(男、女各20人),记录了他们某一天的走路步数,并将数据整理如下:

(1)已知某人一天的走路步数超过8000步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的列联表,并据此判断能否有95%以上的把握认为“评定类型”与“性别”有关?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)若小王以这40位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选2人,其中每日走路不超过5000步的有人,超过10000步的有人,设,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+ax2+bx+1的导数f′(x)满足f′(1)=2a,f′(2)=﹣b,其中常数a,b∈R. (Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程.
(Ⅱ)设g(x)=f′(x)ex . 求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx.
(1)求f(x)的单调区间和极值;
(2)若对任意 恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC
(1)证明:A1C⊥平面BED;
(2)求二面角A1﹣DE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足对任意的都有,且

(1)求数列的通项公式;

(2)设数列的前项和为,不等式对任意的正整数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40m的半圆形O为圆心,AB为直径绿化区域,现计划对其进行改建.在AB的延长线上取点D,使OD=80m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2. 设∠AOC=x rad.

(1)写出S关于x的函数关系式S(x),并指出x的取值范围;

(2)张强同学说:当∠AOC=时,改建后的绿化区域面积S最大.张强同学的说法正确吗?若不正确,请求出改建后的绿化区域面积S最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先阅读下列结论的证法,再解决后面的问题:已知a1 , a2∈R,a1+a2=1,求证a12+a22
【证明】构造函数f(x)=(x﹣a12+(x﹣a22
则f(x)=2x2﹣2(a1+a2x+a12+a22
=2x2﹣2x+a12+a22
因为对一切x∈R,恒有f(x)≥0.
所以△=4﹣8(a12+a22)≤0,从而得a12+a22
(1)若a1 , a2 , …,an∈R,a1+a2+…+an=1,请写出上述结论的推广式;
(2)参考上述解法,对你推广的结论加以证明.

查看答案和解析>>

同步练习册答案