精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=
(1)求sinC的值;
(2)当a=2,2sinA=sinC时,求b及c的长.

【答案】
(1)解:因为cos2C=1﹣2sin2C= ,及0<C<π

所以 sinC=


(2)解:当a=2,2sinA=sinC时,由正弦定理 = ,解得c=4.

由cos2C=2cos2C﹣1= ,及0<C<π 得cosC=±

由余弦定理 c2=a2+b2﹣2abcosC,得b2± b﹣12=0,

解得b= 或b=2

所以b= 或b=2 ,c=4.


【解析】(1)注意角的范围,利用二倍角公式求得sinC的值.(2)利用正弦定理先求出边长c,由二倍角公式求cosC,用余弦定理解方程求边长b.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知M={(x,y)|=3},N={(x,y)|ax+2y+a=0}且M∩N=,则a=(  )
A.﹣6或﹣2
B.﹣6
C.2或﹣6
D.﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x
(1)求f(log2 )的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E:=1(a>b>0)的焦距为2 , 且该椭圆经过点(,).
(Ⅰ)求椭圆E的方程;
(Ⅱ)经过点P(﹣2,0)分别作斜率为k1 , k2的两条直线,两直线分别与椭圆E交于M,N两点,当直线MN与y轴垂直时,求k1k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示).则该样本的中位数、众数、极差分别是(  )

A.46 45 56
B.46 45 53
C.47 45 56
D.45 47 53

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项的和记为Sn . 如果a4=﹣12,a8=﹣4.
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 的离心率,短轴右端点为为线段的中点.

(Ⅰ) 求椭圆的方程;

(Ⅱ)过点任作一条直线与椭圆相交于两点,试探究在轴上是否存在定点,使得,若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此做了四次实验,得到的数据如表:

零件的个数x(个)

2

3

4

5

加工的时间y(小时)

2.5

3

4

4.5


(1)在给定的坐标系中画出表中数据的散点图;

(2)求出y关于x的线性回归方程y= x+ ,并在坐标系中画出回归直线;
(3)试预测加工6个零件需要多少时间?
(注: = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在轴上,离心率.以两个焦点和短轴的两个端点为顶点的四边形的周长为8,面积为

(Ⅰ)求椭圆的方程;

(Ⅱ)若点为椭圆上一点,直线的方程为,求证:直线与椭圆有且只有一个交点.

查看答案和解析>>

同步练习册答案