【题目】集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分拆,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分拆,则集合A={a,b,c}的不同分拆种数为多少?
【答案】27种
【解析】
试题考虑集合A1为空集,有一个元素,2个元素,和集合A相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可求出值.当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;总之,共27种拆法.
解:当A1=φ时,A2=A,此时只有1种分拆;
当A1为单元素集时,A2=AA1或A,此时A1有三种情况,故拆法为6种;
当A1为双元素集时,如A1={a,b},A2={c}、{a,c}、{b,c}、{a,b,c},此时A1有三种情况,故拆法为12种;
当A1为A时,A2可取A的任何子集,此时A2有8种情况,故拆法为8种;
综上,共27种拆法.
科目:高中数学 来源: 题型:
【题目】在下列命题中,不是公理的是( )
A.经过两条相交直线有且只有一个平面
B.平行于同一直线的两条直线互相平行
C.如果一条直线上的两点在一个平面内,那么这条直线在此平面内
D.如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列1,﹣4,9,﹣16,25…的一个通项公式为( )
A.an=n2
B.an=(﹣1)nn2
C.an=(﹣1)n+1n2
D.an=(﹣1)n(n+1)2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一名工人维护3台独立的游戏机,一天内3台需要维护的概率分别为0.9、0.8和0.85,则一天内至少有一台游戏机不需要维护的概率为_____(结果用小数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断: ①△ABC一定是钝角三角形;
②△ABC可能是直角三角形;
③△ABC可能是等腰三角形;
④△ABC不可能是等腰三角形.
其中,正确的判断是( )
A.①③
B.①④
C.②③
D.②④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com