【题目】设x,y满足约束条件 ,目标函数z=ax+by(a>0,b>0)的最大值M,若M的取值范围是[1,2],则点M(a,b)所经过的区域面积= .
科目:高中数学 来源: 题型:
【题目】已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某程序框图如图所示,现输入如下四个函数,则可以输出的函数是( )
A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD= .
(1)求证:CD⊥平面ADS;
(2)求AD与SB所成角的余弦值;
(3)求二面角A﹣SB﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l极坐标方程ρcosθ﹣ρsinθ+3=0,圆M的极坐标方程为ρ=4sinθ.以极点为原点,极轴为x轴建立直角坐标系(1)写出直线l与圆M的直角标方程;
(2)设直线l与圆M交于A、B两点,求AB的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面给出的命题中:
(1)“双曲线的方程为”是“双曲线的渐近线为”的充分不必要条件;
(2)“”是“直线与直线互相垂直”的必要不充分条件;
(3)已知随机变量服从正态分布,且,则;
(4)已知圆,圆,则这两个圆有3条公切线.
其中真命题的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将7名应届师范大学毕业生分配到3所中学任教.
(1)4个人分到甲学校,2个人分到乙学校,1个人分到丙学校,有多少种不同的分配方案?
(2)一所学校去4个人,另一所学校去2个人,剩下的一个学校去1个人,有多少种不同的分配方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆上动点到两个焦点的距离之和为4,且到右焦点距离的最大值为.
(1)求椭圆的方程;
(2)设点为椭圆的上顶点,若直线与椭圆交于两点(不是上下顶点).试问:直线是否经过某一定点,若是,求出该定点的坐标;若不是,请说明理由;
(3)在(2)的条件下,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com