精英家教网 > 高中数学 > 题目详情

【题目】已知函数).

(Ⅰ)若函数有零点,求实数的取值范围;

(Ⅱ)若对任意的,都有,求实数的取值范围.

【答案】(1) .

(2) .

【解析】分析:(1)由函数有零点得:关于的方程)有解

,则,于是有关于的方程有正根,设,对m进行讨论即可;

(2)由题意可得,变形为:,进行分类讨论化简整理可得.

详解:(1)由函数有零点得:关于的方程)有解

,则

于是有,关于的方程有正根

,则函数的图象恒过点且对称轴为

时,的图象开口向下,故恰有一正数解

时,,不合题意

时,的图象开口向上,故有正数解的条件是

解得:

综上可知,实数的取值范围为.

(2)由“当时,都有”得:

,故②变形为:

时,不等式②简化为,此时实数

时,有

∵当时,

当且仅当时取等号

综上可知,实数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】质检过后,某校为了解科班学生的数学、物理学习情况,利用随机数表法从全年极名理科生抽取名学生的成绩进行统计分析.已知学生考号的后三位分别为.

(Ⅰ)若从随机数表的第行第列的数开始向右读,请依次写出抽取的前人的后三位考号;

(Ⅱ)如果题(Ⅰ)中随机抽取到的名同学的数学、物理成绩(单位:分)对应如下表:

数学成绩

87

91

90

89

93

物理成绩

89

90

91

88

92

求这两科成绩的平均数和方差,并且分析哪科成绩更稳定。

附:(下面是摘自随机数表的第行到第6行)

………

………

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过点,且与圆相内切.

I)求动圆的圆心的轨迹方程;

II)设直线(其中与(1)中所求轨迹交于不同两点D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种“笼具”由内,外两层组成,无下底面,内层和外层分别是一个圆锥和圆柱,其中圆柱与圆锥的底面周长相等,圆柱有上底面,制作时需要将圆锥的顶端剪去,剪去部分和接头忽略不计,已知圆柱的底面周长为,高为,圆锥的母线长为.

(1)求这种“笼具”的体积;

(2)现要使用一种纱网材料制作50个“笼具”,该材料的造价为每平方米8元,共需多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.

指数

级别

类别

户外活动建议

可正常活动

轻微污染

易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.

轻度污染

中度污染

心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动.

中度重污染

重污染

健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动.

现统计邵阳市市区2016年1月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.

(1)求这60天中属轻度污染的天数;

(2)求这60天空气质量指数的平均值;

(3)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,…,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为 ,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等关系已知满足,则下列选项中一定成立的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以等腰直角三角形斜边上的高为折痕,把折成互相垂直的两个平面后,有以下四个结论:

三棱锥是正三棱锥;

平面的法向量和平面的法向量互相垂直.

其中正确结论的序号是________________请把正确结论的序号都填上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若关于的不等式的解集是,求的值;

(2)设关于的不等式的解集是,集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从装有个不同小球的口袋中取出个小球(),共有种取法。在这种取法中,可以视作分为两类:第一类是某指定的小球未被取到,共有种取法;第二类是某指定的小球被取到,共有种取法。显然,即有等式:成立。试根据上述想法,下面式子(其中)应等于 ( )

A. B. C. D.

查看答案和解析>>

同步练习册答案