精英家教网 > 高中数学 > 题目详情

椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=.

(Ⅰ)求椭圆方程;

(Ⅱ)设F、F分别为椭圆的左、右焦点,求证:

解:(Ⅰ)过 A、B的直线方程为
因为由题意得有惟一解。
有惟一解,
所以

又因为 ,即

所以

从而得
故所求的椭圆方程为.
(Ⅱ)由(Ⅰ)得,
所以

解得 ,

因此.
从而 ,

因为,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(06年浙江卷文)(14分)

如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,

且椭圆的离心率e=.

 (Ⅰ)求椭圆方程;

(Ⅱ)设F、F分别为椭圆的左、右焦点,求证: 。

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年浙江卷理)(14分)

如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=.

 (Ⅰ)求椭圆方程;

(Ⅱ)设F、F分别为椭圆的左、右焦点,M为线段AF的中点,求证:∠ATM=∠AFT.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省内江市、广安市高三第二次模拟联考试题理科数学(解析版) 题型:解答题

已知A1,A2,B是椭圆=1(a>b>0)的顶点(如图),直线l与椭圆交于异于顶点的P,Q两点,且l∥A2B,若椭圆的离心率是,且|A2B|=

(1)求此椭圆的方程;

(2)设直线A1P和直线BQ的倾斜角分别为α,β,试判断α+β是否为定值?若是,求出此定值;若不是,说明理由。

 

 

查看答案和解析>>

科目:高中数学 来源:2010年内蒙古元宝山区高三第一次摸底考试理科数学卷 题型:选择题

已知F1F2分别为椭圆=1(ab>0)的左右焦点,经过椭圆上第二象限内任意一点P的切线为l,过原点OOMlF2P于点M,则|MP|与ab的关系是(    )

   A.|MP|=a     B.|MP|>a        C.|MP|=b        D.|MP|<b

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆=1(a>b>0)与双曲线=1(m>0,n>0)有相同的焦点(-c,0)和(c,0),若c是a、m的等比中项,n2是2m2与c2的等差中项,则椭圆的离心率是(    )

A.              B.             C.          D.

查看答案和解析>>

同步练习册答案