精英家教网 > 高中数学 > 题目详情
13.已知实数x,y满足$\left\{\begin{array}{l}x>0\\ x+y≤7\\ x+2≤2y\end{array}\right.$,则$\frac{y}{x}$的最小值是$\frac{3}{4}$.

分析 先作出不等式组所表示的平面区域,由于$\frac{y}{x}$可以看做平面区域内的点与原点的连线的斜率,结合图形可求斜率最大值

解答 解:作出不等式组所表示的平面区域如图所示:
由于$\frac{y}{x}$可以看做平面区域内的点与原点的连线的斜率,
结合图形可知,当直线过OA时 斜率最小.
由于$\left\{\begin{array}{l}{x+y=7}\\{x+2=2y}\end{array}\right.$可得A(4,3),此时k=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.

点评 本题主要考查了线性规划在求解最值中的应用,解题的关键是发现所求的式子的几何意义是平面区域内的点与原点的连线的斜率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.函数f(x)=2|x|+ax为偶函数,则实数a的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,某公园有三条观光大道AB,BC,AC围成直角三角形,其中直角边BC=200m,斜边AB=400m,现有甲、乙、丙三位小朋友分别在AB,BC,AC大道上嬉戏,所在位置分别记为点D,E,F.
(1)若甲、乙都以每分钟100m的速度从点B出发在各自的大道上奔走,到大道的另一端时即停,乙比甲迟2分钟出发,当乙出发1分钟后,求此时甲乙两人之间的距离;
(2)设∠CEF=θ,乙丙之间的距离是甲乙之间距离的2倍,且∠DEF=$\frac{π}{3}$,请将甲乙之间的距离y表示为θ的函数,并求甲乙之间的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在极坐标系中,射线l:θ=$\frac{π}{6}$与圆C:ρ=2交于点A,椭圆Γ的方程为ρ2=$\frac{3}{1+2si{n}^{2}θ}$,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy
(Ⅰ)求点A的直角坐标和椭圆Γ的参数方程;
(Ⅱ)若E为椭圆Γ的下顶点,F为椭圆Γ上任意一点,求$\overrightarrow{AE}$•$\overrightarrow{AF}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.对于给定的正整数数列{an},满足an+1=an+bn,其中bn是an的末位数字,下列关于数列{an}的说法正确的是(  )
A.如果a1是5的倍数,那么数列{an}与数列{2n}必有相同的项
B.如果a1不是5的倍数,那么数列{an}与数列{2n}必没有相同的项
C.如果a1不是5的倍数,那么数列{an}与数列{2n}只有有限个相同的项
D.如果a1不是5的倍数,那么数列{an}与数列{2n}有无穷多个相同的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在平面直角坐标系中,分别在x轴与直线$y=\frac{{\sqrt{3}}}{3}({x+1})$上从左向右依次取点Ak、Bk,k=1,2,…,其中A1是坐标原点,使△AkBkAk+1都是等边三角形,则△A10B10A11的边长是512.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知直线$l:\left\{\begin{array}{l}x=\frac{3}{5}t\\ y=\frac{4}{5}t\end{array}\right.(t$为参数).现以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,设圆C的极坐标方程为ρ=2cosθ,直线l与圆C交于A,B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2\sqrt{5}cosα\\ y=2sinα\end{array}\right.$(α为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线${C_2}:{ρ^2}+4ρcosθ-2ρsinθ+4=0$.
(Ⅰ)写出曲线C1,C2的普通方程;
(Ⅱ)过曲线C1的左焦点且倾斜角为$\frac{π}{4}$的直线l交曲线C2于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC中,角A,B,C所对的边分别为a,b,c,已知sinA+sinC=psinB且$ac=\frac{1}{4}{b^2}$.若角B为锐角,则p的取值范围是(  )
A.$(-\sqrt{2},\sqrt{2})$B.$(0,\sqrt{2})$C.$(-\sqrt{2},-\frac{{\sqrt{6}}}{2})∪(\frac{{\sqrt{6}}}{2},\sqrt{2})$D.$(\frac{{\sqrt{6}}}{2},\sqrt{2})$

查看答案和解析>>

同步练习册答案