精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求的极值;

2)当函数有两个极值点,总有成立,求整数t的最大值.

【答案】1)极大值为-7的极小值为. 2)最大值为.

【解析】

1)通过求出的导数,求出的单调区间,进而可得极值;

2)对求导,函数有两个极值点可得上有两个不等的正实根,由韦达定理可得,再将代入可得恒成立,,求导,求出 的最小值即可.

解:(1

上单调递增,上单调递减,上单调递增,

从而的极大值为的极小值为

(2)函数的定义域为

有两个极值点

上有两个不等的正实根,

,可得

由题,有,即恒成立,

,因为

所以上单调递增且当时,,又

故存在,使得,即

所以上单调递减,上单调递增,

所以t的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,AD//平面BCC1B1ADDB.求证:

1BC//平面ADD1A1

2)平面BCC1B1⊥平面BDD1B1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市新上一种瓶装洗发液,为了打响知名度,举行为期六天的低价促销活动,随着活动的有效开展,第六天该超市对前五天中销售的洗发液进行统计,y表示第x天销售洗发液的瓶数,得到统计表格如下:

x

1

2

3

4

5

y

4

6

10

15

20

1)若yx具有线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并预测第六天销售该洗发液的瓶数(按四舍五入取到整数);

2)超市打算第六天加大活动力度,购买洗发液可参加抽奖,中奖者可领取奖金20元,中奖概率为,已知甲、乙两名顾客抽奖中奖与否相互独立,求甲、乙所获得奖金之和X的分布列及数学期望.

参考公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左,右焦点分别为M是椭圆E上的一个动点,且的面积的最大值为.

1)求椭圆E的标准方程,

2)若,四边形ABCD内接于椭圆E,记直线ADBC的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分13分如图在直角坐标系的顶点是原点始边与轴正半轴重合终边交单位圆于点将角的终边按逆时针方向旋转交单位圆于点

1

2分别过轴的垂线垂足依次为的面积为的面积为求角的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,的参数方程为t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.

1)求的普通方程和曲线C的直角坐标方程;

2)求曲线C上的点到距离的最大值及该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,若函数满足:①在区间上单调递减;②存在常数p,使其值域为,则称函数渐近函数

1)证明:函数是函数的渐近函数,并求此时实数p的值;

2)若函数,证明:当时,不是的渐近函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应生产发展、生活富裕、乡风文明、村容整洁、管理民主的社会主义新农村建设,某自然村将村边一块废弃的扇形荒地(如图)租给蜂农养蜂、产蜜与售蜜.已知扇形AOB中,(百米),荒地内规划修建两条直路ABOC,其中点C上(CAB不重合),在小路ABOC的交点D处设立售蜜点,图中阴影部分为蜂巢区,空白部分为蜂源植物生长区.,蜂巢区的面积为S(平方百米).

1)求S关于的函数关系式;

2)当为何值时,蜂巢区的面积S最小,并求此时S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系xOy的原点为极坐标系的极点,x轴的正半轴为极轴.已知曲线的极坐标方程为P上一动点,Q的轨迹为.

1)求曲线的极坐标方程,并化为直角坐标方程,

2)若点,直线l的参数方程为t为参数),直线l与曲线的交点为AB,当取最小值时,求直线l的普通方程.

查看答案和解析>>

同步练习册答案