精英家教网 > 高中数学 > 题目详情

【题目】如图,圆锥的底面半径,高,点是底面直径所对弧的中点,点是母线的中点.

1)求圆锥的侧面积和体积;

2)求异面直线所成角的大小.(结果用反三角函数表示)

【答案】1)侧面积,体积;(2.

【解析】

1)根据圆锥的侧面积公式,以及体积公式,结合题中数据,即可得出结果;

2)先由题意,得到两两垂直,以为坐标原点,以所在直线为轴,轴,轴,建立空间直角坐标系,分别求出,根据向量夹角公式,即可求出结果.

1)因为圆锥的底面半径,高

所以其母线长为

因此圆锥的侧面积为

体积为:

2)由题意,易得:两两垂直,以为坐标原点,以所在直线为轴,轴,轴,建立如图所示的空间直角坐标系,

又点是母线的中点,所以

因此

记异面直线所成角的大小为

所以

因此,异面直线所成角的大小为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系中,椭圆 的长轴长为4,离心率为.

(1)求椭圆的标准方程;

(2)过右焦点作一条不与坐标轴平行的直线,若交椭圆两点,点关于原点的对称点为,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工程队共有500人,要建造一段6000米的高速公路,工程需要把500人分成两组,甲组的任务是完成一段4000米的软土地带,乙组的任务是完成剩下的2000米的硬土地带,据测算,软、硬土地每米的工程量是30工(工为计量单位)和40.

1)若平均分配两组的人数,分别计算两组完工的时间,并求出此时全队的筑路工期;

2)如何分配两组的人数会使得全队的筑路工期最短?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,是正三角形,四边形为直角梯形,点中点,且.

1)求证:平面平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】知函数

1)当时,求的单调区间;

2)设函数,若的唯一极值点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左.右焦点分别为,短轴两个端点为,且四边形的边长为 的正方形.

(Ⅰ)求椭圆的方程;

(Ⅱ)若,分别是椭圆长轴的左,右端点,动点满足,连结,交椭圆于点.证明: 的定值;

(Ⅲ)在(Ⅱ)的条件下,试问轴上是否存在异于点,的定点,使得以为直径的圆恒过直线,的交点,若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次高三年级模拟考试中,数学试卷有一道满分10分的选做题,学生可以从AB两道题目中任选一题作答.某校有900名高三学生参加了本次考试,为了了解该校学生解答该选做题的得分情况,作为下一步教学的参考依据,计划从900名考生的选做题成绩中随机抽取一个容量为10的样本,为此将900名考生选做题的成绩按照随机顺序依次编号为001~900.

1)若采用系统抽样法抽样,从编号为001~090的成绩中用简单随机抽样确定的成绩编号为025,求样本中所有成绩编号之和;

2)若采用分层抽样,按照学生选择A题目或B题目,将成绩分为两层.已知该校高三学生有540人选做A题目,有360人选做B题目,选取的样本中,A题目的成绩平均数为5,方差为2B题目的成绩平均数为5.5,方差为0.25.

i)用样本估计该校这900名考生选做题得分的平均数与方差;

ii)本选做题阅卷分值都为整数,且选取的样本中,A题目成绩的中位数和B题目成绩的中位数都是5.5.从样本中随机选取两个大于样本平均值的数据做进一步调查,求取到的两个成绩来自不同题目的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点的延长线上,且,点的轨迹为

(1)求直线及曲线的极坐标方程;

(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,

有零点 m 的取值范围;

确定 m 的取值范围使得有两个相异实根.

查看答案和解析>>

同步练习册答案