精英家教网 > 高中数学 > 题目详情
6.设$f(x)=\frac{2}{{{2^x}+1}}+m,x∈R,m$为常数.
(1)若f(x)为奇函数,求实数m的值;
(2)判断f(x)在R上的单调性,并用单调性的定义予以证明;
(3)求f(x)在(-∞,1]上的最小值.

分析 (1)法一:由函数f(x)为奇函数,f(0)=0求出m.
法二:利用函数f(x)为奇函数,通过f(-x)=-f(x),化简求解可得m=-1.
(2)证明:任取x1,x2∈R,且x1<x2,利用单调性的定义,证明f(x1)>f(x2)即可.
(3)利用函数f(x)在(-∞,+∞)上为减函数,求解函数的最小值.

解答 解:(1)法一:由函数f(x)为奇函数,得f(0)=0即m+1=0,
所以m=-1…(4分)
法二:因为函数f(x)为奇函数,所以f(-x)=-f(x),
即f(-x)+f(x)=0…(2分)
∴$f({-x})+f(x)=({m+\frac{2}{{{2^{-x}}+1}}})+({m+\frac{2}{{{2^x}+1}}})=2m+({\frac{2}{{\frac{1}{2^x}+1}}+\frac{2}{{{2^x}+1}}})$=$2m+({\frac{{2•{2^x}}}{{1+{2^x}}}+\frac{2}{{{2^x}+1}}})=2m+\frac{{2•({{2^x}+1})}}{{1+{2^x}}}=2m+2=0$,
所以m=-1…(4分)
(2)证明:任取x1,x2∈R,且x1<x2…(5分)
则有$f({x_1})-f({x_2})=({m+\frac{2}{{{2^{x_1}}+1}}})-({m+\frac{2}{{{2^{x_2}}+1}}})=\frac{2}{{{2^{x_2}}+1}}-\frac{2}{{{2^{x_1}}+1}}=\frac{{2•({{2^{x_2}}-{2^{x_1}}})}}{{({{2^{x_1}}+1})•({{2^{x_2}}+1})}}$…(8分)
∵x1<x2,∴${2^{x_1}}-{2^{x_2}}<0$,∴${2^{x_2}}+1>0$,∴${2^{x_1}}+1>0$,f(x1)-f(x2)>0,
即f(x1)>f(x2)…(9分)
所以,对任意的实数m,函数f(x)在(-∞,+∞)上是减函数…(10分)
(3)∵函数f(x)在(-∞,+∞)上为减函数,
∴函数f(x)在(-∞,-1]上为减函数,…(11分)
∴当x=-1时,$f{(x)_{min}}=f({-1})=\frac{4}{3}+m$…(12分)

点评 本题考查函数的奇偶性以及函数的单调性的综合应用,函数的最值的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{25}$=1上一点P到椭圆一个焦点的距离为2,则P到另一焦点的距离为(  )
A.3B.5C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=logax(a>1)在[2,π]上的最大值比最小值大1.则a等于(  )
A.$\frac{π}{2}$B.2C.$\frac{2}{π}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|x2-3x-4≤0},B={x|x2-2mx+m2-9≤0},C={y|y=2x+b,x∈R}
(1)若A∩B=[0,4],求实数m的值;
(2)若A∩C=∅,求实数b的取值范围;
(3)若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=1-x+{log_2}\frac{1-x}{1+x}$,则$f({\frac{1}{2}})+f({-\frac{1}{2}})$的值为(  )
A.0B.-2C.2D.$2{log_2}\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=ax-1+4的图象恒过定点P,则P点坐标是(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2\sqrt{3}sinxcosx+{sin^2}x-{cos^2}x$,
(1)求f(x)的值域;
(2)说明怎样由y=sinx的图象得到f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设实数a满足log2a=4.则loga2=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>a>0)的右焦点为F,O为坐标原点,若存在直线l过点F交双曲线C的右支于A,B两点,使$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则双曲线离心率的取值范围是$\sqrt{3}$>e≥$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案