精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE.
(1)见解析   (2)见解析
证明:(1)如图,取CE的中点G,连接FG,BG.

∵F为CD的中点,∴GF∥DE,且GF=DE.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又AB=DE,∴GF=AB.
∴四边形GFAB为平行四边形,故AF∥BG.
∵AF?平面BCE,BG?平面BCE,∴AF∥平面BCE.
(2)∵△ACD为等边三角形,F为CD的中点,∴AF⊥CD.
∵DE⊥平面ACD,AF?平面ACD,∴DE⊥AF.又CD∩DE=D,∴AF⊥平面CDE.
∵BG∥AF,∴BG⊥平面CDE.
∵BG?平面BCE,∴平面BCE⊥平面CDE.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知△ABC是边长为l的等边三角形,D、E分别是AB、AC边上的点,AD = AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到三棱锥A-BCF,其中
(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当时,求三棱锥F-DEG的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,已知平面平面,.
(1)求证:
(2)若为棱上的一点,且平面,求线段的长度

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱ABC-A1B1C1中,点D为棱AB的中点,BC=1,AA1=.
(1)求证:BC1∥平面A1CD;
(2)求三棱锥D-A1B1C的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB= 60°,FC⊥平面ABCD,AE⊥BD,CB=" CD=" CF.
(1)求证:BD⊥平面AED;
(2)求二面角F—BD—C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求二面角A1-BC-A的大小;
(3)求CC1到平面A1AB的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

所在平面外一点,若,则在平面内的射影是的(   )
A.内心B.外心 C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示为棱长是1的正方体的表面展开图,在原正方体中,给出下列三个结论:

①点M到AB的距离为
②三棱锥C-DNE的体积是
③AB与EF所成的角是.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有(  )

A.AH⊥△EFH所在平面
B.AG⊥△EFH所在平面
C.HF⊥△AEF所在平面
D.HG⊥△AEF所在平面

查看答案和解析>>

同步练习册答案