精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)是否存在实数,使得函数上的最小值为1?若存在,求出的值;若不存在,请说明理由.

【答案】(1)单调递减区间是,单调递增区间是极小值,无极大值.(2)存在实数,使得函数上的最小值为

【解析】试题分析:(1)先求导数,再求导函数零点,列表分析导函数符号变化规律,进而确定单调区间和极值(2)先根据导函数是否变化分类讨论:当时,导函数恒为正,所以最小值为;当时,导函数先负后正,所以最小值为;当时,导函数为负,最小值为,最后根据最小值为1,解对应的值。

试题解析:解:由题意知函数的定义域为

(Ⅰ)当时,

时,,当时,

所以函数的单调递减区间是,单调递增区间是

所以当时,函数有极小值,无极大值.

(Ⅱ)①时,函数为增函数,

函数上的最小值为,显然,故不满足条件;

时,函数上为减函数,在上为增函数

故函数上的最小值为的极小值

,满足条件;

时,函数为减函数

故函数上的最小值为,即,不满足条件.

综上所述,存在实数,使得函数上的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?

(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;

②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的三角A,B,C的对边分别为a,b,c满足(2b﹣c)cosA=acosC.
(1)求A的值;
(2)若a=2,求△ABC面积的最大值;
(3)若a=2,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是平行四边形,底面.

(1)求证:平面平面

(2)若点分别为上的点,且,在线段上是否存在一点,使得平面;若存在,求出三棱锥的体积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)的图象如图所示,下列数值排序正确的是(

A.0<f′(2)<f′(3)<f(3)﹣f(2)
B.0<f′(3)<f(3)﹣f(2)<f′(2)
C.0<f(3)<f′(2)<f(3)﹣f(2)
D.0<f(3)﹣f(2)<f′(2)<f′(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x3-3(a+1)x2+6axa∈R.

(Ⅰ)曲线yf(x)x=0处的切线的斜率为3,求a的值;

(Ⅱ)若对于任意x∈(0,+∞),f(x)+f(-x)≥12lnx恒成立,求a的取值范围;

(Ⅲ)a>1,设函数f(x)在区间[1,2]上的最大值、最小值分别为M(a)、m(a),

h(a)=M(a)-m(a),求h(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率 ,过点A(0,﹣b)和B(a,0)的直线与原点的距离为
(1)求椭圆的方程;
(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班同学利用寒假进行社会实践活动,对岁的人群随机抽取人进行了一次生活习惯是

否符合低碳观念的调查,若生活习惯符合低碳观念的称为低碳族,否则称为非低碳族,得

到如下统计表和各年龄段人数频率分布直方图:

(I)补全频率分布直方图并求的值

(II)从年龄段在低碳族中采用分层抽样法抽取人参加户外低碳体验活动,其中选取人作为领队,求选取的名领队中恰有1人年龄在岁的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x∈R,x2+x+1>0,命题q:x∈Q,x2=3,则下列命题中是真命题的是(
A.p∧q
B.¬p∨q
C.¬p∧¬q
D.¬p∨¬q

查看答案和解析>>

同步练习册答案