精英家教网 > 高中数学 > 题目详情
已知直线l1:3x+4y-2=0和l2:2x-5y+14=0的相交于点P.求:
(Ⅰ)过点P且平行于直线2x-y+7=0的直线方程;
(Ⅱ)过点P且垂直于直线2x-y+7=0的直线方程.
分析:(Ⅰ)联立两直线的方程即可求出交点P的坐标,求出直线2x-y+7=0的斜率为2,所求直线与直线2x-y+7=0平行得到斜率相等都为2,根据P的坐标和斜率2写出直线方程即可;
(Ⅱ)根据两直线垂直时斜率乘积为-1求出所求直线的斜率,根据P和斜率写出直线方程即可.
解答:解:由
3x+4y-2=0
2x-5y+14=0
解得
x=-2
y=2
,即点P坐标为P(-2,2),直线2x-y+7=0的斜率为2
(Ⅰ)过点P且平行于直线2x-y+7=0的直线方程为y-2=2(x+2)即2x-y+6=0;
(Ⅱ)过点P且垂直于直线2x-y+7=0的直线方程为y-2=-
1
2
(x+2)
即x+2y-2=0.
点评:此题考查学生会利用两直线的方程求两直线的交点坐标,掌握两直线平行及垂直时斜率的关系,会根据一点和斜率写出直线的点斜式方程,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l1
3
x-y+2=0,l2:3x+
3
y-5=0,则直线l1与l2的夹角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:3x+4y-5=0和l2:3x+5y-6=0相交,则它们的交点是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1
3
x-y+2=0,求过点(1,0)且与直线l1的夹角为60°的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:3x+4y-5=0与直线l2:2x-3y+8=0交于点P.
(1)求点P的坐标;
(2)求过点P且与l1垂直的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:3x+4y-2=0与l2:2x+y+2=0的交点为P.
(Ⅰ)求交点P的坐标;
(Ⅱ)求过点P且平行于直线l3:x-2y-1=0的直线方程;
(Ⅲ)求过点P且垂直于直线l3:x-2y-1=0直线方程.

查看答案和解析>>

同步练习册答案