精英家教网 > 高中数学 > 题目详情
11.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足$\frac{1}{{a}_{n}}$=$\frac{{b}_{1}}{2+1}$-$\frac{{b}_{2}}{{2}^{2}+1}$$+\frac{{b}_{3}}{{2}^{3}+1}$-…+(-1)n+1$\frac{{b}_{n}}{{2}^{n}+1}$,求数列{bn}的通项公式;
(3)在(2)的条件下,设cn=2n+λbn,问是否存在实数λ使得数列{cn}(n∈N*)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明你的理由.

分析 (1)由Sn=2an-2(n∈N*),可得a1=2a1-2,解得a1=2;n≥2时,an=Sn-Sn-1,化为:an=2an-1.即可得出.
(2)$\frac{1}{{2}^{n}}$=$\frac{1}{{a}_{n}}$=$\frac{{b}_{1}}{2+1}$-$\frac{{b}_{2}}{{2}^{2}+1}$$+\frac{{b}_{3}}{{2}^{3}+1}$-…+(-1)n+1$\frac{{b}_{n}}{{2}^{n}+1}$,n≥2时,$\frac{1}{{2}^{n-1}}$=$\frac{{b}_{1}}{2+1}$-$\frac{{b}_{2}}{{2}^{2}+1}$$+\frac{{b}_{3}}{{2}^{3}+1}$-…+$(-1)^{n}•\frac{{b}_{n-1}}{{2}^{n-1}+1}$,相减可得:bn=(-1)n$(\frac{1}{{2}^{n}}+1)$.当n=1时,$\frac{{b}_{1}}{3}$=$\frac{1}{2}$,解得b1=$\frac{3}{2}$.
(3)cn=2n+λbn,n≥3时,cn=2n+λ$(-1)^{n}(\frac{1}{{2}^{n}}+1)$,cn-cn-1=2n-1+$(-1)^{n}•λ(2+\frac{3}{{2}^{n}})$>0,即(-1)n•λ>-$\frac{{2}^{n-1}}{\frac{3}{{2}^{n}}+2}$.①当n为大于或等于4的偶数时,λ>-$\frac{1}{\frac{3}{{2}^{2n-1}}+\frac{1}{{2}^{n-2}}}$.②当n为大于或等于3的奇数时,λ<$\frac{1}{\frac{3}{{2}^{2n-1}}+\frac{1}{{2}^{n-2}}}$.当n=2时,c2-c1>0,即λ<8.即可得出.

解答 解:(1)由Sn=2an-2(n∈N*),可得a1=2a1-2,解得a1=2;
n≥2时,an=Sn-Sn-1=2an-2-(2an-1-2),化为:an=2an-1
∴数列{an}是等比数列,公比为2,首项为2.∴an=2n
(2)∵$\frac{1}{{2}^{n}}$=$\frac{1}{{a}_{n}}$=$\frac{{b}_{1}}{2+1}$-$\frac{{b}_{2}}{{2}^{2}+1}$$+\frac{{b}_{3}}{{2}^{3}+1}$-…+(-1)n+1$\frac{{b}_{n}}{{2}^{n}+1}$,
∴$\frac{1}{{2}^{n-1}}$=$\frac{{b}_{1}}{2+1}$-$\frac{{b}_{2}}{{2}^{2}+1}$$+\frac{{b}_{3}}{{2}^{3}+1}$-…+$(-1)^{n}•\frac{{b}_{n-1}}{{2}^{n-1}+1}$,
∴$\frac{1}{{2}^{n}}-\frac{1}{{2}^{n-1}}$=(-1)n+1$\frac{{b}_{n}}{{2}^{n}+1}$,∴bn=(-1)n$(\frac{1}{{2}^{n}}+1)$.
当n=1时,$\frac{{b}_{1}}{3}$=$\frac{1}{2}$,解得b1=$\frac{3}{2}$.∴bn=$\left\{\begin{array}{l}{\frac{3}{2},n=1}\\{(-1)^{n}(\frac{1}{{2}^{n}}+1),n≥2}\end{array}\right.$.
(3)cn=2n+λbn
∴n≥3时,cn=2n+λ$(-1)^{n}(\frac{1}{{2}^{n}}+1)$,cn-1=2n-1+(-1)n-1λ$(\frac{1}{{2}^{n-1}}+1)$,
cn-cn-1=2n-1+$(-1)^{n}•λ(2+\frac{3}{{2}^{n}})$>0,即(-1)n•λ>-$\frac{{2}^{n-1}}{\frac{3}{{2}^{n}}+2}$.
①当n为大于或等于4的偶数时,λ>-$\frac{{2}^{n-1}}{\frac{3}{{2}^{n}}+2}$,即λ>-$\frac{1}{\frac{3}{{2}^{2n-1}}+\frac{1}{{2}^{n-2}}}$,当且仅当n=4时,λ>-$\frac{128}{35}$.
②当n为大于或等于3的奇数时,λ<$\frac{1}{\frac{3}{{2}^{2n-1}}+\frac{1}{{2}^{n-2}}}$,当且仅当n=3时,λ<$\frac{32}{19}$.
当n=2时,c2-c1=$({2}^{2}+\frac{5}{4}λ)$-$(2+\frac{3}{2}λ)$>0,即λ<8.
综上可得:λ的取值范围是$(-\frac{128}{35},\frac{32}{19})$.

点评 本题考查了数列递推关系、等比数列的通项公式、分类讨论方法、不等式的解法、作差法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;\;,\;\;b>0})$的一个焦点为(5,0),渐近线方程为$y=±\frac{3}{4}x$,则该双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{16}=1$C.$\frac{x^2}{4}-\frac{y^2}{3}=1$D.$\frac{x^2}{3}-\frac{y^2}{4}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.化简:已知α是第四象限角,则$cosα\sqrt{\frac{1-sinα}{1+sinα}}+sinα\sqrt{\frac{1-cosα}{1+cosα}}$=cosα-sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A、B、C所对的边长分别为a,b,c,如果sin2B=sinAsinC,且c=2a则cosB的值等于(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,已知过点M(1,1)的直线l与圆(x+1)2+(y-2)2=5相切,且与直线ax+y-1=0垂直,则实数a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设正方体ABCD-A1B1C1D1的棱长为2,则点A1到平面B1AC的距离是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=1,且3an+1=1-an
(Ⅰ)证明:数列{an$-\frac{1}{4}$}是等比数列
(Ⅱ)记bn=(-1)n+1n(an-$\frac{1}{4}$),求数列{bn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.元代数学家朱世杰所著《四元玉鉴》一书,是中国古代数学的重要著作之一,共分卷首、上卷、中卷、下卷四卷,下卷中《果垛叠藏》第一问是:“今有三角垛果子一所,值钱一贯三百二十文,只云从上一个值钱二文,次下层层每个累贯一文,问底子每面几何?”据此,绘制如图所示程序框图,求得底面每边的果子数n为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次对昼夜温差大小与种子发芽数之间的研究中,研究人员获得了一组样本数据:
温差x(℃)131211108
发芽数y(颗)3026252316
(1)请根据上述数据,选取其中的前3组数据,求出y关于x的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归直线方程是可靠的,请问(1)中所得的线性回归方程是否可靠?

查看答案和解析>>

同步练习册答案