精英家教网 > 高中数学 > 题目详情
20.解α的终边过点P(4,-3),则cosα的值为(  )
A.$\frac{4}{5}$B.$-\frac{3}{5}$C.4D.-3

分析 根据三角函数的定义进行求解即可.

解答 解:∵α的终边经过点P(4,-3),
∴r=5,
则cosα=$\frac{y}{r}$=$\frac{4}{5}$,
故选:A.

点评 本题主要考查三角函数值的计算,根据三角函数的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}满足a3=7,a5+a7=26,其前n项和为Sn
(1)求{an}的通项公式及Sn
(2)令${b_n}=\frac{1}{{{S_n}-n}}(n∈{N^*})$,求数列{bn}的前n项和Tn,并求$\lim_{n→∞}{T_n}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设全集U=R,若集合$A=\left\{{x\left|{\frac{1}{x}≥1}\right.}\right\}$,则∁UA={x|x≤0或x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.定义在R上的奇函数f(x)满足f(x+1)=-$\frac{1}{f(x)}$.当x∈[0,1]时,f(x)=2x-1,则f($log_{\frac{1}{2}}{18}$)的值是-$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知$sin({θ+\frac{π}{4}})=\frac{{\sqrt{2}}}{4}\;,\;\;θ∈({-\frac{π}{2}\;,\;\;0})$,则sinθcosθ=-$\frac{3}{8}$,cosθ-sinθ=$\frac{\sqrt{7}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)={(6-x-{x^2})^{\frac{3}{2}}}$的单调递减区间为(  )
A.$[{-\frac{1}{2},2}]$B.$[{-3,-\frac{1}{2}}]$C.$[-\frac{1}{2},+∞)$D.$(-∞,-\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足${a_n}+{a_{n-1}}={({-1})^{\frac{{n({n+1})}}{2}}}n,{S_n}$是其前n项和,若S2017=-1007-b,且a1b>0,则$\frac{1}{a_1}+\frac{2}{b}$的最小值为3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=ln({x-2})-\frac{x^2}{2a}$(a为常数,a≠0).
(Ⅰ)当a=1时,求函数f(x)在点(3,f(3))的切线方程
(Ⅱ)求f(x)的单调区间;
(Ⅲ)若f(x)在x0处取得极值,且${x_0}∉[{e+2,{e^3}+2}]$,而f(x)≥0在[e+2,e3+2]上恒成立,求实数a的取值范围.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如表):
零件数x(个)1020304050
加工时间y(分钟)6268758189
由最小二乘法求得回归方程 $\widehat{y}$=0.67x+a,则a的值为54.9.

查看答案和解析>>

同步练习册答案