精英家教网 > 高中数学 > 题目详情

已知函数f(x)、g(x)(x∈R),设不等式|f(x)|+|g(x)|<a(a>0)的解集是M,不等式|f(x)+g(x)|<a(a>0)的解集是N,则M________N.


分析:首先分析题目由不等式|f(x)|+|g(x)|<a的解集是M,不等式|f(x)+g(x)|<a的解集是N,判断M与N的关系.考虑到应用绝对值不等式得:|f(x)+g(x)|≤|f(x)|+|g(x)|,然后可直接得到|f(x)|+|g(x)|<a的解必是不等式|f(x)+g(x)|<a的解,即可得到答案.
解答:根据绝对值不等式得到:|f(x)+g(x)|≤|f(x)|+|g(x)|
则即|f(x)|+|g(x)|<a一定能推出不等式|f(x)+g(x)|<a成立,
则不等式|f(x)|+|g(x)|<a的解必是不等式|f(x)+g(x)|<a的解,
即M⊆N,且因为当绝对值不等式等号成立的时候推出M=N成立.
即答案为M⊆N.
点评:此题主要考查绝对值不等式的应用,绝对值不等式在高考中属于重点的考点,应用广泛且比较简单,同学们需要理解记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知函数f(x),g(x)分别由如表给出:

则满足f[g(x)]<g[f(x)]的x的值
1和3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),g(x)分别由右表给出,则 f[g(2)]的值为(  )
x 1 2 3
f(x) 4 1 2
x 1 2 3
g(x) 3 2 1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ) 求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|;
(Ⅲ)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),g(x)分别由下表给出
x 1 2 3
f(x) 1 3 2
x 1 2 3
g(x) 3 2 1
则f[g(1)]的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)和g(x)都是定义在R上的奇函数,设F(x)=a2f(x)+bg(x)+2,若F(2)=4,则F(-2)=
0
0

查看答案和解析>>

同步练习册答案