¾«Ó¢¼Ò½ÌÍøA£®£¨²»µÈʽѡ×öÌ⣩Èô¹ØÓÚxµÄ²»µÈʽ|x+3|-|x+2|¡Ýlog2aÓн⣬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£º
 
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬ËıßÐÎABCDÊÇÔ²OµÄÄÚ½ÓËıßÐΣ¬ÑÓ³¤ABºÍDCÏཻÓÚµãP£®Èô
PB
PA
=
1
2
£¬
PC
PD
=
1
3
£¬Ôò
BC
AD
µÄֵΪ
 
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÉèÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=3+2
2
cos¦È
y=-1+2
2
sin¦È
£¨¦ÈΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos¦È-sin¦È
£¬ÔòÇúÏßCÉϵ½Ö±Ïßl¾àÀëΪ
2
µÄµãµÄ¸öÊýΪ£º
 
£®
·ÖÎö£ºA¡¢¸ù¾Ý¾ø¶ÔÖµµÄ¼¸ºÎÒâÒ壬ÎÒÃÇÒ×·ÖÎö³ö|x+3|-|x+2|±íʾÊýÖáÉϵÄxµ½-2ºÍ-3µÄ¾àÀëÖ®ºÍ£¬Çó³ö|x+3|-|x+2|µÄ×îСֵºó£¬¼´¿ÉµÃµ½ÊµÊýaµÄÈ¡Öµ·¶Î§£®
B¡¢ÀûÓøîÏ߶¨ÀíÎÒÃÇÒ×Çó³öPA¡¢PB¡¢PC¡¢PDµÄ±ÈÀý£¬ÓÉÔ²Íâ½ÓËıßÐζ¨Àí£¬ÎÒÃÇÒ×Åжϳö¡÷PBC¡×¡÷PDA£¬¸ù¾ÝÏàËÆÈý½ÇÐζÔÓ¦±ß³É±ÈÀý£¬ÎÒÃÇÒ׵õ½´ð°¸£®
C¡¢¸ù¾ÝÒÑÖªÖÐÇúÏߺÍÖ±Ïߵļ«×ø±ê·½³Ì£¬ÎÒÃÇÒ×Çó³öÔ²µÄ±ê×¼·½³ÌºÍÖ±ÏßµÄÒ»°ã·½³Ì£¬ÅжϳöÖ±ÏßÓëÔ²µÄλÖùØϵ£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£ºA¡ß¹ØÓÚxµÄ²»µÈʽ|x+3|-|x+2|¡Ýlog2aÓн⣬
|x+3|-|x+2|±íʾÊýÖáÉϵÄxµ½-3ºÍ-2µÄ¾àÀëÖ®²î£¬Æä×îСֵµÈÓÚ-1£¬×î´óÖµÊÇ1£¬
ÓÉÌâÒâlog2a¡Ü1£¬
¡à0£¼a¡Ü2£®
¹Ê´ð°¸Îª£º£¨0£¬2]
B¡¢¡ß
PB
PA
=
1
2
£¬
PC
PD
=
1
3
£¬
¡àÉè PB=m£¬PC=n£¬Ôò  PA=2 m£¬PD=3n£¬
ÓÉÇиîÏ߶¨ÀíµÃ£ºPA•PB=PC•PD
¼´2m2=3n2
¹Êm£ºn=
3
£º
2

ÓÉÔ²Íâ½ÓËıßÐζ¨ÀíµÃ£º¡ÏPBC=¡ÏPDA£¬¡ÏPCB=¡ÏPAD
¡à¡÷PBC¡×¡÷PDA
¡à
BC
AD
=
PB
PD
=
m
3n
=
6
6

¹Ê´ð°¸Îª£º
6
6

C¡¢¡ßÇúÏßCµÄ²ÎÊý·½³ÌΪ
x=3+2
2
cos¦È
y=-1+2
2
sin¦È
£¨¦ÈΪ²ÎÊý£©£¬
¡àÇúÏßCµÄ±ê×¼·½³ÌÕ⣺£¨x-3£©2+£¨y+1£©2=8£¬Ëü±íʾÒÔ£¨3£¬-1£©µãΪԲÐÄ£¬ÒÔ2
2
Ϊ°ë¾¶µÄÔ²
ÓÖ¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñ=
2
cos¦È-sin¦È
£¬
¡àËüµÄÒ»°ã·½³ÌΪx-y-2=0
¡ß£¨3£¬-1£©µãµ½Ö±Ïßx-y-2=0µÄ¾àÀëΪ
2
£¬µÈÓÚÔ²°ë¾¶µÄÒ»°ë
¹ÊÇúÏßCÉϵ½Ö±Ïßl¾àÀëΪ
2
µÄµãµÄ¸öÊýΪ3¸ö
¹Ê´ð°¸Îª£º3
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊǼòµ¥ÇúÏߵļ«×ø±ê·½³Ì£¬ÓëÔ²ÓйصıÈÀýÏ߶Σ¬¾ø¶Ô²»µÈʽµÄ½â·¨£¬AÖйؼüÊÇÕÆÎÕ¾ø¶ÔÖµµÄ¼¸ºÎÒâÒ壬BÖйØϵÊÇÇó³öPA¡¢PB¡¢PC¡¢PDµÄ±ÈÀý£¬CÖеĹؼüÊÇÇó³öÔ²µÄ±ê×¼·½³ÌºÍÖ±ÏßµÄÒ»°ã·½³Ì£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøA£®£¨²»µÈʽѡ×öÌ⣩
º¯Êýf£¨x£©=x2-x-a2+a+1¶ÔÓÚÈÎһʵÊýx£¬¾ùÓÐf£¨x£©¡Ý0£®ÔòʵÊýaÂú×ãµÄÌõ¼þÊÇ
 
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩
Èçͼ£¬Ô²OÊÇ¡÷ABCµÄÍâ½ÓÔ²£¬¹ýµãCµÄÇÐÏß½»ABµÄÑÓ³¤ÏßÓÚµãD£¬CD=2
3
£¬AB=BC=4£¬ÔòACµÄ³¤Îª
 
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩
ÔÚ¼«×ø±êϵÖУ¬ÇúÏߦÑ=4cos(¦È-
¦Ð
3
)
ÉÏÈÎÒâÁ½µã¼äµÄ¾àÀëµÄ×î´óֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøA£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ|3x-6|-|x-4|£¾2xµÄ½â¼¯Îª
 
£®

B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬Ö±ÏßPCÓëÔ²OÏàÇÐÓÚµãC£¬¸îÏßPAB¾­¹ýÔ²ÐÄO£¬
ÏÒCD¡ÍABÓÚµãE£¬PC=4£¬PB=8£¬ÔòCE=
 
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚ¼«×ø±êϵÖУ¬Ô²¦Ñ=4cos¦ÈµÄÔ²Ðĵ½Ö±ÏߦÑsin(¦È+
¦Ð
4
)=2
2
µÄ¾àÀëΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩Èô²»µÈʽ|x+1|+|x-2|¡Ýa¶ÔÈÎÒâx¡ÊRºã³ÉÁ¢£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ
 
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬¡ÏB=¡ÏD£¬AE¡ÍBC£¬¡ÏACD=90¡ã£¬ÇÒAB=6£¬AC=4£¬AD=12£¬ÔòAE=
 
£®
¾«Ó¢¼Ò½ÌÍø
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ֱ½Ç×ø±êϵxoyÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨ¼«×ø±êϵ£¬ÉèµãA£¬B·Ö±ðÔÚÇúÏßC1£º
x=3+cos¦È
y=sin¦È
 £¨¦ÈΪ²ÎÊý£©ºÍÇúÏßC2£ºp=1ÉÏ£¬Ôò|AB|µÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÄµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ|x-5|+|x+3|¡Ý10µÄ½â¼¯ÊÇ
{x|x¡Ý6»òx¡Ü-4}
{x|x¡Ý6»òx¡Ü-4}
£®
B£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÔÚ¼«×ø±êϵÖУ¬Ô²¦Ñ=-2sin¦ÈµÄÔ²Ðĵļ«×ø±êÊÇ
£¨1£¬
3¦Ð
2
£©
£¨1£¬
3¦Ð
2
£©
£®
C£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩Èçͼ£¬ÒÑÖªÔ²ÖÐÁ½ÌõÏÒABÓëCDÏཻÓÚµãF£¬EÊÇABÑÓ³¤ÏßÉÏÒ»µã£¬ÇÒDF=CF=2
2
£¬BE=1£¬BF=2£¬ÈôCEÓëÔ²ÏàÇУ¬ÔòÏ߶ÎCEµÄ³¤Îª
7
7
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ñ¡×öÌ⣺£¨¿¼Éú×¢Ò⣺ÇëÔÚÏÂÁÐÈýÌâÖÐÈÎÑ¡Ò»Ìâ×÷´ð£¬Èç¹û¶à×ö£¬Ôò°´Ëù×öµÚÒ»ÌâÆÀ·Ö£©
A£®£¨²»µÈʽѡ×öÌ⣩²»µÈʽ
x+5
(x-1)2
¡Ý2
µÄ½â¼¯ÊÇ
[-
1
2
£¬1£©¡È£¨1£¬3]
[-
1
2
£¬1£©¡È£¨1£¬3]
£®
B£®£¨¼¸ºÎÖ¤Ã÷Ñ¡×öÌ⣩ Èçͼ£¬¡ÑOµÄÖ±¾¶AB=6cm£¬PÊÇÑÓ³¤ÏßÉϵÄÒ»µã£¬¹ýµãP×÷¡ÑOµÄÇÐÏߣ¬ÇеãΪC£¬Á¬½ÓAC£¬Èô¡ÏCAP=30¡ã£¬ÔòPC=
3
3
3
3
£®
C£®£¨×ø±êϵÓë²ÎÊý·½³ÌÑ¡×öÌ⣩ÒÑÖªÖ±Ïßx+2y-4=0Óë
x=2-3cos¦È
y=1+3sin¦È
£¨¦ÈΪ²ÎÊý£©ÏཻÓÚA¡¢BÁ½µã£¬Ôò|AB|=
6
6
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸