精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列的前项中,奇数项的和为56,偶数项的和为48,且(其中).

(1)求数列的通项公式;

(2)若,…,,…是一个等比数列,其中,求数列的通项公式;

(3)若存在实数,使得对任意恒成立,求的最小值.

【答案】(1);(2);(3).

【解析】分析:(1)先根据已知条件求得m=7,再利用已知求出,再写出数列的通项公式.(2)先求出再结合.(3)先求出的单调性,再求的最小值.

详解:(1)由题意,

因为,所以,解得.

所以,因为,且,所以.

设数列公差为,则,所以.

所以,通项公式.

(2)由题意,

设这个等比数列公比为,则.那么

另一方面,所以.

(3)记,则 .

因为,所以当时,,即

,所以当时,的最大值为,所以.

,当时,

所以,当时,的最小值,所以.

综上,的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某中学要从高一年级甲、乙两个班级中选择一个班参加市电视台组织的“环保知识竞赛”.该校对甲、乙两班的参赛选手(每班7人)进行了一次环境知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85分,乙班学生成绩的中位数是85.

(1)求的值;

(2)根据茎叶图,求甲、乙两班同学成绩的方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。今年初投入了电力型公交车辆,混合动力型公交车辆,计划以后电力型车每年的投入量比上一年增加,混合动力型车每年比上一年多投入辆.设分别为第年投入的电力型公交车、混合动力型公交车的数量,设分别为年里投入的电力型公交车、混合动力型公交车的总数量。

1)求,并求年里投入的所有新公交车的总数

2)该市计划用年的时间完成全部更换,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AA1=2,AC= ,过BC的中点D作平面ACB1的垂线,交平面ACC1A1于E,则BE与平面ABB1A1所成角的正切值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(2 ),曲线C的参数方程为 (α为参数).
(1)直线l过M且与曲线C相切,求直线l的极坐标方程;
(2)点N与点M关于y轴对称,求曲线C上的点到点N的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为(
A.101
B.808
C.1212
D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,其中.

(1)当时,求函数的单调区间;

(2)若方程有三个互不相同的根0,,其中.

①是否存在实数,使得成立?若存在,求出的值;若不存在,说明理由.

②若对任意的,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:

上年度出险次数

0

1

2

3

4

保费

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

概率

0.30

0.15

0.20

0.20

0.10

0.05

(Ⅰ)求一续保人本年度的保费高于基本保费的概率;

(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;

(Ⅲ)求续保人本年度的平均保费与基本保费的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且,圆轴交于点为椭圆上的动点,面积最大值为.

(1)求圆与椭圆的方程;

(2)圆的切线交椭圆于点,求的取值范围.

查看答案和解析>>

同步练习册答案