精英家教网 > 高中数学 > 题目详情
分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。
(Ⅰ)(Ⅱ)

试题分析:(Ⅰ)易知

联立,解得 
(Ⅱ)显然 可设
联立
 
   得 ①

 又

 ②
综①②可知 
点评:直线与椭圆相交时常联立方程,利用韦达定理转化较简单,条件中将转化为向量表示,进而与A,B坐标联系起来,即可利用韦达定理
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的顶点为,焦点为.

(Ⅰ)求椭圆C的方程;
(Ⅱ)设n 为过原点的直线,是与n垂直相交于P点,与椭圆相交于A, B两点的直线,.是否存在上述直线使成立?若存在,求出直线的方程;并说出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点到两点的距离之和为,设点的轨迹为曲线.
(1)写出的方程;
(2)设过点的斜率为)的直线与曲线交于不同的两点,,点轴上,且,求点纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P是双曲线C左支上一点,F1F2是双曲线的左、右两个焦点,且PF1PF2PF2与两条渐近线相交于M,N两点(如图),点N恰好平分线段PF2,则双曲线的离心率是(   )
A.B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线)的右焦点作圆的切线,交轴于点,切圆于点,若,则双曲线的离心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数)的图象恒过定点,椭圆
)的左,右焦点分别为,直线经过点且与⊙相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆轴上方的交点为,且,求内切圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的一条渐近线方程是y=,它的一个焦点在抛物线的准线上,则双曲线的方程为
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在椭圆上找一点,使这一点到直线的距离为最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点在以点为焦点的抛物线上,则等于__________

查看答案和解析>>

同步练习册答案