精英家教网 > 高中数学 > 题目详情

【题目】函数f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段图象过点(0,1),如图所示.

(1)求函数f1(x)的表达式;

(2)将函数yf1(x)的图象向右平移个单位,得函数yf2(x)的图象,求yf2(x)的最大值,并求出此时自变量x的集合.

【答案】(1)f1(x)=2sin(2x).(2)ymax=2. x的取值集合为{x|xkZ}.

【解析】

(1)先求周期,再求ω,根据初相得φ根据点(0,1)求A,(2)根据图像变换得f2(x)解析式,并化简,再根据余弦函数性质求最值以及对应自变量.

(1)由图知,Tπ,于是ω=2.yAsin2x的图象向左平移

yAsin(2xφ)的图象,于是φ=2·.(0,1)代入yAsin(2x),得A=2.

f1(x)=2sin(2x).

(2)依题意,f2(x)=2sin[2(x)+]=-2cos(2x),

2x=2π,即x (kZ)时,ymax=2.

x的取值集合为{x|xk∈Z}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68

1)求回归直线方程bxa,其中b=-20ab

2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,已知(a﹣3b)cosC=c(3cosB﹣cosA).
(1)求 的值;
(2)若c= a,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是圆O的直径,弦CD⊥AB于点M,点E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于点G.

(1)求证:EF=EG;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线x+y+1=0与椭圆交于PQ两点,且OPOQ,求该椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:

1证明直线l经过定点并求此点的坐标;

2若直线l不经过第四象限,求k的取值范围;

3若直线lx轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设的面积为S,求S的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图的程序框图,如果输入的a=6,b=4,那么输出的s的值为(
A.17
B.22
C.18
D.20

查看答案和解析>>

同步练习册答案