精英家教网 > 高中数学 > 题目详情

【题目】如图,已知AB两镇分别位于东西湖岸MNA处和湖中小岛的B处,点CA的正西方向1 km处,tanBAN,∠BCN.现计划铺设一条电缆连通AB两镇,有两种铺设方案:①沿线段AB在水下铺设;②在湖岸MN上选一点P,先沿线段AP在地下铺设,再沿线段PB在水下铺设,预算地下、水下的电缆铺设费用分别为2万元km4万元km.

1)求AB两镇间的距离;

2)应该如何铺设,使总铺设费用最低?

【答案】15km2)点P选在A镇的正西方向(4) km处,总铺设费用最低

【解析】

1)过BMN的垂线,垂足为D,在RtABDRtBCD中利用正切的定义表示ADCD,借助ACADCD构建方程,求得BDAD,进而由勾股定理,得答案;

2)方案①总费用等于单价乘以长度;方案②:设∠BPDθ,在RtBDP中利用正弦函数和正切函数的定义用θ表示BP,AP长度,进而构建总铺设费用的函数,利用导数分析该函数的单调性,得此方案的最小值;最后比较方案①和方案②的费用,确定答案.

1 如图,过BMN的垂线,垂足为D.

RtABD中,tanBADtanBAN

所以ADBD.

RtBCD中,tanBCDtanBCN1

所以CDBD.

ACADCDBDBDBD1

所以BD3,则CD3AD4.

由勾股定理得,AB5(km)

所以AB两镇间的距离为5km

2 方案①:沿线段AB在水下铺设时,总铺设费用为5×420(万元)

方案②:设∠BPDθ,则θ,其中θ0=∠BAN.

RtBDP中,DPBP

所以AP4DP4.

则总铺设费用为2AP4BP8

f(θ),则f′(θ)

f′(θ)0,得θ,列表如下:

θ

f′(θ)

0

f(θ)

单调递减

极小值

单调递增

所以f(θ)的最小值为.

所以方案②的总铺设费用最低为 (万元),此时AP4.

,所以应选择方案②进行铺设,点P选在A镇的正西方向(4) km处,总铺设费用最低.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx若方程2[fx]25tfx+3t20恰有4个不同的实根,则实数t的取值范围为(参考数据:ln2≈0.6931)(

A.

B.

C.22ln2)∪(1

D.21n2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点PMN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OCMN所成的角为

(1)用分别表示矩形的面积,并确定的取值范围;

(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图B,C分别是海岸线上的两个城市两城市间由笔直的海滨公路相连BC之间的距离为100km,海岛A在城市B的正东方50从海岛A到城市C,先乘船按北偏西θ角(其中锐角的正切值为)航行到海岸公路P处登陆,再换乘汽车到城市C已知船速为25km/h,车速为75km/h.

(1)试建立由APC所用时间与的函数解析式

(2)试确定登陆点P的位置,使所用时间最少,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EGE1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设曲线E的方程为1,动点Amn),B(﹣mn),C(﹣m,﹣n),Dm,﹣n)在E上,对于结论:①四边形ABCD的面积的最小值为48;②四边形ABCD外接圆的面积的最小值为25π.下面说法正确的是(

A.①错,②对B.①对,②错C.①②都错D.①②都对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆柱的轴截面是边长为2的正方形,点是圆弧上的一动点(不与重合),点是圆弧的中点,且点在平面的两侧.

1)证明:平面平面

2)设点在平面上的射影为点,点分别是的重心,当三棱锥体积最大时,回答下列问题.

(ⅰ)证明:平面

(ⅱ)求平面与平面所成二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为正实数.

(1)若不等式恒成立,求实数的取值范围;

(2)时,证明.

查看答案和解析>>

同步练习册答案