精英家教网 > 高中数学 > 题目详情
9.函数$f(x)=\frac{{\sqrt{4-{2^x}}}}{x-1}$的定义域为{x|x≤2且x≠1}.

分析 根据函数成立的条件即可求函数的定义域.

解答 解:根据题意,要使得函数$f(x)=\frac{{\sqrt{4-{2^x}}}}{x-1}$有意义,
要满足$\left\{\begin{array}{l}x-1≠0\\ 4-{2^x}≥0\end{array}\right.∴x≤2,且x≠1$,故可知答案为{x|x≤2且x≠1}.
故答案为:{x|x≤2且x≠1}

点评 本题主要考查函数定义域的求解,解决的关键是根据分母不为零,偶次根式下为非负数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知定义在R上的函数f(x)满足f(x)=-f(x+1),若f(1)=2,求f(2015),f(2016)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.化简:$\sqrt{1-2sin200°cos160°}$=cos20°-sin20°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,$f'(x)+\frac{f(x)}{x}<0$,若a=$\frac{1}{2}$f($\frac{1}{2}$),$b=-\sqrt{2}f(-\sqrt{2})$,c=(ln$\frac{1}{2}$)f(ln$\frac{1}{2}$),则a,b,c的大小关系正确的是(  )
A.a<c<bB.b<c<aC.a<b<cD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知等差数列{an}的前n项和为Sn,且a2=5,S9=99.
(Ⅰ)求an 及Sn
(Ⅱ)若数列{$\frac{4}{{a}_{n}^{2}-1}$}的前n项和Tn,试求Tn并证明不等式Tn<1成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)={log_{\frac{1}{3}}}(9x)•{log_3}\frac{x}{3},\frac{1}{9}≤x≤27$.
(Ⅰ)设t=log3x,用t表示f(x),并指出t的取值范围;
(Ⅱ)求f(x)的最值,并指出取得最值时对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若a=log45,则2a+2-a=$\frac{6\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若集合A={x|x2-1≤0},B={y|y=x2,x∈R},则A∩B=(  )
A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某同学用五点法画函数f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
请将上表数据补充完整,并直接写出函数f(x)的解析式.

查看答案和解析>>

同步练习册答案