精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两位“准笑星”在“信阳笑星”选拔赛中,5位评委给出的评分情况如图所示,记甲、乙两人的平均得分分别为 ,记甲、乙两人得分的标准差分别为s1、s2 , 则下列判断正确的是( )

A. ,s1<s2
B. ,s1>s2
C. ,s1<s2
D. ,s1>s2

【答案】B
【解析】解:由茎叶图知,甲的得分情况为77,76,88,90,94;
乙的得分情况为75,88,86,88,93,
因此可知甲的平均分为 = ×(77+76+88+90+94)=85,
乙的平均分为 = ×(75+88+86+88+93)=86,
故可知 ,排除C、D,
再根据茎叶图中数据的分布情况可知,乙的数据主要集中在86左右,甲的数据比较分散,
乙比甲更为集中,故乙比甲成绩稳定,s1>s2
故选:B.
根据茎叶图的数据,利用平均数和方差的定义即可进行判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(cos2x, sinx), =(1,cosx),函数f(x)=2 +m,且当x∈[0, ]时,f(x)的最小值为2.
(1)求m的值,并求f(x)图象的对称轴方程;
(2)设函数g(x)=[f(x)2]﹣f(x),x∈[0, ],求g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2asinωxcosωx+2 cos2ωx﹣ +1(a>0,ω>0)的最大值为3,最小正周期为π.
(1)求函数f(x)的单调递增区间.
(2)若f(θ)= ,求sin(4θ+ )的值.
(3)若存在区间[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b﹣a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本题满分14分

如图,在多面体中,四边形是菱形,相交于点,平面平面,点的中点.

1求证:直线平面

2求证:直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是我国南宋时期的数学家秦九韶提出的一种多项式f(x)=anxn+an1xn1+…+a1x+a0的求值问题的算法.现按照这个程序执行函数f (x)=3x4﹣2x3﹣6x﹣17的计算,若输入的值x0=2,则输出的v的值是(

A.0
B.2
C.3
D.﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了实施政府绩效管理、创新政府公共服务模式、提高公共服务效率.实施了“政府承诺,等你打分”民意调查活动,通过问卷调查了学生、在职人员、退休人员共250人,统计结果表不幸被污损,如表:

学生

在职人员

退休人员

满意

78

不满意

5

12

若在所调查人员中随机抽取1人,恰好抽到学生的概率为0.32.
(1)求满意学生的人数;
(2)现用分层抽样的方法在所调查的人员中抽取25人,则在职人员应抽取多少人?
(3)若满意的在职人员为77,则从问卷调查中填写不满意的“学生和在职人员”中选出2人进行访谈,求这2人中包含了两类人员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某商业中心O有通往正东方向和北偏东30方向的两条街道,某公园P位于商业中心北偏东角(),且与商业中心O的距离为公里处,现要经过公园P修一条直路分别与两条街道交汇于AB两处。

1)当AB沿正北方向时,试求商业中心到AB两处的距离和;

2)若要使商业中心OAB两处的距离和最短,请确定AB的最佳位置。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A、B、C对边分别为a、b、c,sinA+sinB=2sinC,a=2b.
(1)证明:△ABC为钝角三角形;
(2)若SABC= ,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.

1)当每辆车的月租金定为3600元时,能租出多少辆车?

2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

同步练习册答案