精英家教网 > 高中数学 > 题目详情

【题目】定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数
(1)若f(x)是奇函数,求m的值;
(2)当m=1时,求函数f(x)在(﹣∞,0)上的值域,并判断函数f(x)在(﹣∞,0)上是否为有界函数,请说明理由;
(3)若函数f(x)在[0,1]上是以3为上界的函数,求实数m的取值范围.

【答案】
(1)解:由f(x)是奇函数,则f(﹣x)=﹣f(x)

,即(1﹣m2)2x=0,∴m2﹣1=0,m=±1


(2)解:当m=1时,

∵x<0,∴0<2x<1,∴f(x)∈(0,1),满足|f(x)|≤1.

∴f(x)在(﹣∞,0)上为有界函数


(3)解:若函数f(x)在[0,1]上是以3为上界的有界函数,则有|f(x)|≤3在[0,1]上恒成立.

∴﹣3≤f(x)≤3,

,化简得:

上面不等式组对一切x∈[0,1]都成立,


【解析】(1)根据函数奇偶性的性质建立方程关系进行求解即可.(2)根据分式函数的性质以及有界函数的定义进行求解判断即可.(3)根据函数的有界性建立不等式关系,利用不等式恒成立进行求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

() 若函数有零点, 求实数的取值范围;

(Ⅱ) 证明: 当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,我国南海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C相距都为5n mile,与小岛D相距为 n mile.小岛A对小岛B与D的视角为钝角,且
(Ⅰ)求小岛A与小岛D之间的距离和四个小岛所形成的四边形的面积;
(Ⅱ)记小岛D对小岛B与C的视角为α,小岛B对小岛C与D的视角为β,求sin(2α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的方程为:x2+y2﹣2x﹣4y+m=0.
(1)求m的取值范围;
(2)若圆C与直线3x+4y﹣6=0交于M、N两点,且|MN|=2 ,求m的值;
(3)设直线x﹣y﹣1=0与圆C交于A、B两点,是否存在实数m,使得以AB为直径的圆过原点,若存在,求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求f(x)+f(1﹣x)的值;
(2)若数列{an}满足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求数列{an}的通项公式;
(3)若数列{bn}满足bn=2nan , Sn是数列{bn}的前n项和,是否存在正实数k,使不等式knSn>3bn对于一切的n∈N*恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合M={(x,y)|y= },N={(x,y)|x﹣y+m=0},若M∩N的子集恰有4个,则m的取值范围是(
A.(﹣2 ,2
B.[﹣2,2
C.(﹣2 ,﹣2]
D.[2,2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”
附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828


(1)求x的值并估计全校3000名学生中读书谜大概有多少?(经频率视为频率)
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?

非读书迷

读书迷

合计

15

45

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

以直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,已知点的直角坐标为,若直线的极坐标方程为曲线的参数方程是为参数).

(1)求直线和曲线的普通方程;

(2)设直线和曲线交于两点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点O轴正半轴为极轴,已知点P的直角坐标为(1,-5),C的极坐标为,若直线l经过点P,且倾斜角为,圆C的半径为4.

(1).求直线l的参数方程及圆C的极坐标方程;

(2).试判断直线l与圆C有位置关系.

查看答案和解析>>

同步练习册答案