精英家教网 > 高中数学 > 题目详情
9.将函数f(x)=sin(2x+φ)(0<φ<π)的图象向左平移$\frac{π}{6}$个单位后得到函数y=g(x)的图象,若y=g(x)是偶函数,则φ=$\frac{π}{6}$.

分析 首先,结合平移得到g(x)=2sin(2x+$\frac{π}{3}$+φ),然后根据g(x)为偶函数即可求解.

解答 解:图象向左平移$\frac{π}{6}$得到f(x+$\frac{π}{6}$)=2sin(2x+$\frac{π}{3}$+φ),
∴g(x)=2sin(2x+$\frac{π}{3}$+φ),
∵g(x)为偶函数,
因此$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,
又0<φ<π,
故φ=$\frac{π}{6}$.
故答案为:$\frac{π}{6}$.

点评 本题重点考查了三角函数图象与性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若f(x)=ax3+4x+5的图象在(1,f(1))处的切线在x轴上的截距为-$\frac{3}{7}$.则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的左右焦点分别为F1,F2,过F1的直线与左支相交于A,B两点,如果|AF2|+|BF2|=2|AB|,则|AB|=$4\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设命题p:m∈{x|x2+(a-8)x-8a≤0},命题q:方程$\frac{{x}^{2}}{m-3}$+$\frac{{y}^{2}}{5-m}$=1表示焦点在x轴上的双曲线.
(1)若当a=1时,命题p∧q假命题,p∨q”为真命题,求实数m的取值范围;
(2)若命题p是命题q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=2sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期为$\frac{2π}{3}$,则ω=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=cosx(x∈[0,2π])与函数g(x)=tanx的图象交于M,N两点,则|$\overrightarrow{OM}$+$\overrightarrow{ON}$|=π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知函数f(x)=2x+$\frac{1}{x}$(x>0),证明函数f(x)在(0,$\frac{\sqrt{2}}{2}$)上单调递减,并写出函数f(x)的单调递增区间;
(2)记函数g(x)=a|x|+2ax(a>1)
①若a=4,解关于x的方程g(x)=3;
②若x∈[-1,+∞),求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产量x与相应的生产能耗y的几组对应数据:
x4235
y49m3954
根据上表可得回归方程$\widehaty=9.4x+9.1$,那么表中m的值为(  )
A.27.9B.25.5C.26.9D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放三十年”演讲比赛活动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率.

查看答案和解析>>

同步练习册答案