精英家教网 > 高中数学 > 题目详情

设数列{an}是一个公差为的等差数列,已知它的前10项和为,且a1,a2,a4 成等比数列.
(1)求数列{an}的通项公式;
(2)若,求数列的前项和Tn

(1)(2)Tn

解析试题分析:(1)由等差数列的求和公式代入已知条件可得d的值,进而可得a1的值,可得通项公式;(2)可得,裂项相消法可得其和.
试题解析:(1)设数列{an}的前项和为
∵S10 = 110,∴
.①
∵a1,a2,a4 成等比数列,
,即.∴
∵d ¹ 0,∴a1 = d.②
由①,②解得,∴. 
(2)∵=
.  
 .   
考点:等差数列的通项公式和求和公式,裂项相消法求数列的和.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

等比数列的前项和为,公比,已知.
(1)求数列的通项公式;
(2)若分别为等差数列的第4项和第16项,试求数列的通项公式及前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为0的等差数列满足成等比数列.
(1)求数列的通项公式;(2)数列满足,求数列的前项和;(Ⅲ)设,若数列是单调递减数列,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列中,.
(1)求的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和为,且,令.
(1)求证:数列是等差数列,并求数列的通项公式;
(2)若,用数学归纳法证明是18的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等差数列的公差为,点在函数的图象上().
(1)若,点在函数的图象上,求数列的前项和
(2)若,学科网函数的图象在点处的切线在轴上的截距为,求数列的前 项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列满足:,(≥3),记
(≥3).
(1)求证数列为等差数列,并求通项公式;
(2)设,数列{}的前n项和为,求证:<<.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}中,an+1+an=2n-44(n∈N*),a1=-23.
(1)求an
(2)设Sn为{an}的前n项和,求Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2012•广东)设数列{an}的前n项和为Sn,满足,且a1,a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有

查看答案和解析>>

同步练习册答案