精英家教网 > 高中数学 > 题目详情

定义函数

(1)令函数的图象为曲线,若存在实数,使得曲线处有斜率是的切线,求实数的取值范围;

(2)当,且时,证明:.

 

【答案】

(1).                     (2)证明略

【解析】本试题主要是考查了导数在研究函数中的运用。

(1)

,得.                     

,得.,进而根据方程在区间上有解得到结论。

(2)

,利用第一问的结论得到,求导数,得到单调性,和最值。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平行四边形OABC中,已知过点C的直线与线段OA,OB分别相交于点M,N.若
OM
=x
OA
ON
=y
OB

(1)求证:x与y的关系为y=
x
x+1

(2)设f(x)=
x
x+1
,定义函数F(x)=
1
f(x)
-1(0<x≤1)
,点列Pi(xi,F(xi))(i=1,2,…,n,n≥2)在函数F(x)的图象上,且数列{xn}是以首项为1,公比为
1
2
的等比数列,O为原点,令
OP
=
OP1
+
OP2
+…+
OPn
,是否存在点Q(1,m),使得
OP
OQ
?若存在,请求出Q点坐标;若不存在,请说明理由.
(3)设函数G(x)为R上偶函数,当x∈[0,1]时G(x)=f(x),又函数G(x)图象关于直线x=1对称,当方程G(x)=ax+
1
2
在x∈[2k,2k+2](k∈N)上有两个不同的实数解时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O作曲线C1的切线,切点为B(n,t)(n>0),设曲线C1在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值.
(2)当x,y∈N*且x<y时,证明F(x,y)>F(y,x);
(3)令函数g(x)=F(1,log2(x3+ax2+bx+1))的图象为曲线C2,若存在实数b使得曲线C2在x0(-4<x0<-1)处有斜率为-8的切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义运算a*b=
a,a≤b
b,a>b
,如1*2=1,令f(x)=2x*2-x,则f(x)为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义在区间(-1,1)上,f(
1
2
)=-1,且当x,y∈(-1,1)时,恒有f(x)-f(y)=f(
x-y
1-xy
),又数列{an}满足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)证明:f(x)在(-1,1)上为奇函数;
(II)求f(an)关于n的函数解析式;
(III)令g(n)=f(an)且数列{an}满足bn=
1
g(n)
,若对于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案