精英家教网 > 高中数学 > 题目详情
2.四棱锥P-ABCD的四条侧棱长相等,底面ABCD为正方形,M为PB的中点.
(1)求证:PD∥平面ACM;
(2)若PA=AB,求异面直线PD与DM所成角的正弦值.

分析 (1)连接OM,则PD∥OM,由此能证明PD∥平面ACM.
(2)异面直线PD与CM所成的角,即OM与CM所成的角,即∠OMC,由此能求出异面直线PD与DM所成角的正弦值.

解答 证明:(1)连接OM,正方形ABCD中,OB=OD,又M为PB中点,
∴PD∥OM,
∵OM?平面ACM,PD不在平面ACM内,
∴PD∥平面ACM.…(4分)
解:(2)由(1)知,异面直线PD与CM所成的角,
即OM与CM所成的角,即∠OMC,
令PA=AB=2,则$OM=\frac{1}{2}PD=\frac{1}{2}PA=1$,$OC=\frac{{\sqrt{2}}}{2}BC=\sqrt{2}$,
又PC=PB=PA=2=BC,∴△PBC为正三角形,$CM=\frac{{\sqrt{3}}}{2}BC=\sqrt{3}$,
在△OMC中,由OM2+OC2=MC2,∴OM⊥OC,
∴$sin∠OMC=\frac{OC}{MC}=\frac{{\sqrt{2}}}{{\sqrt{3}}}=\frac{{\sqrt{6}}}{3}$.
故异面直线PD与DM所成角的正弦值为$\frac{\sqrt{6}}{3}$.…(12分)

点评 本题考查线面平行的证明,考查异面直线所成角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2-b2=bc,sinC=2sinB,则A=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=ax2-2x+2,a∈R
(1)已知h(10x)=f(x)+x+1,求h(x)的解析式;
(2)若f(x)>0在x∈[1,2]恒成立,求a的取值范围;
(3)设函数F(x)=|f(x)|,若对任意x1,x2∈[1,2],且x1≠x2,满足$\frac{{F({x_1})-F({x_2})}}{{{x_1}-{x_2}}}$>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知弧度数为$\frac{π}{3}$的圆心角所对的弦长为2,则这个圆心角所对的弧长是(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{{2\sqrt{3}π}}{3}$D.$\frac{{2\sqrt{3}π}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.f(x)=$\left\{\begin{array}{l}{{3}^{x-2},x<2}\\{lo{g}_{3}({x}^{2}-1),x≥2}\end{array}\right.$,若f(x)=1,则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算下列各题:
(1)${({2\frac{1}{4}})^{\frac{1}{2}}}-{({-0.96})^0}-{({3\frac{3}{8}})^{-\frac{2}{3}}}+{({1.5})^{-2}}$;
(2)若10x=3,10y=4,求102x-y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.甲、乙两种小麦试验品种连续5年平均单位单位面积产量如下(单位:t/hm2):根据统计学知识可判断甲、乙两种小麦试验品情况为(  )
品种第一年第二年第三年第四年第五年
9.89.910.11010.2
9.410.310.89.79.8
A.甲与乙稳定性相同
B.甲稳定性好于乙的稳定性
C.乙稳定性好于甲的稳定性
D.甲与乙稳定性随着某些因素的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:
(1)2log210+log20.04   
(2)(log43+log83)•(log35+log95)•(log52+log252)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\frac{x-2}{x-1}$与g(x)═mx+1-m的图象相交于点A,B两点,若动点P满足|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=2,则P的轨迹方程是(x-1)2+(y-1)2=4.

查看答案和解析>>

同步练习册答案