精英家教网 > 高中数学 > 题目详情
(2012•江门一模)已知直线x-
3
y+
3
=0经过椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个顶点B和一个焦点F.
(1)求椭圆的离心率;
(2)设P是椭圆C上动点,求||PF|-|PB||的取值范围,并求||PF|-|PB||取最小值时点P的坐标.
分析:(1)根据直线x-
3
y+
3
=0,可得B(0,1),F(-
3
,0),即以b=1,c=
3
,进而可得椭圆的离心率;
(2)0≤||PF|-|PB||≤|BF|,当且仅当|PF|=|PB|时,||PF|-|PB||=0,当且仅当P是直线BF与椭圆C的交点时,||PF|-|PB||=|BF|…(6分),|BF|=2,由此可得||PF|-|PB||的取值范围是[0,2];根据|PF|=|PB|,可得点P的坐标.
解答:解:(1)依题意,B(0,1),F(-
3
,0),所以b=1,c=
3
…(2分),
所以a=
b2+c2
=2
…(3分),
所以椭圆的离心率e=
c
a
=
3
2
…(4分).
(2)0≤||PF|-|PB||≤|BF|,当且仅当|PF|=|PB|时,||PF|-|PB||=0…(5分),
当且仅当P是直线BF与椭圆C的交点时,||PF|-|PB||=|BF|…(6分),|BF|=2,
所以||PF|-|PB||的取值范围是[0,2]…(7分).
设P(m,n),由|PF|=|PB|得
3
m+n+1=0…(9分),
代入椭圆方程,消去n可得13m2+8
3
m=0,∴m=0或m=-
8
3
13

m=0时,n=-1;m=-
8
3
13
时,n=
11
13
…(11分),
∴所求点P为p(0,-1)和P(-
8
3
13
11
13
)…(12分).
点评:本题考查椭圆的几何性质,考查椭圆方程的运用,正确确定椭圆的方程是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江门一模)(几何证明选讲选做题)
如图,E、F是梯形ABCD的腰AD、BC上的点,其中CD=2AB,EF∥AB,若
EF
AB
=
CD
EF
,则
AE
ED
=
2
2
(或相等的数值)
2
2
(或相等的数值)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)有人收集了春节期间平均气温x与某取暖商品销售额y的有关数据如下表:
平均气温(℃) -2 -3 -5 -6
销售额(万元) 20 23 27 30
根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程y=
b
x+a的系数
b
=-2.4
.则预测平均气温为-8℃时该商品销售额为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)如图,某几何体的正视图和侧视图都是对角线长分别为4和3的菱形,俯视图是对角线长为3的正方形,则该几何体的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)如图,四边形ABCD中,AB=5,AD=3,cosA=
45
,△BCD是等边三角形.
(1)求四边形ABCD的面积;
(2)求sin∠ABD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江门一模)已知函数f(x)=lnx-ax+1,a∈R是常数.
(1)求函数y=f(x)的图象在点P(1,f(1))处的切线l的方程,并证明函数y=f(x)(x≠1)的图象在直线l的下方;
(2)讨论函数y=f(x)零点的个数.

查看答案和解析>>

同步练习册答案